H3 phosphorylation: dual role in mitosis and interphaseThis paper is one of a selection of papers published in this Special Issue entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference and has undergone the Journal’s usual peer review process.

Author:

Pérez-Cadahía Beatriz1,Drobic Bojan1,Davie James R.1

Affiliation:

1. Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.

Abstract

Chromatin condensation and subsequent decondensation are processes required for proper execution of various cellular events. During mitosis, chromatin compaction is at its highest, whereas relaxation of chromatin is necessary for DNA replication, repair, recombination, and gene transcription. Since histone proteins are directly complexed with DNA in the form of a nucleosome, great emphasis is put on deciphering histone post-translational modifications that control the chromatin condensation state. Histone H3 phosphorylation is a mark present in mitosis, where chromatin condensation is necessary, and in transcriptional activation of genes, when chromatin needs to be decondensed. There are four characterized phospho residues within the H3 N-terminal tail during mitosis: Thr3, Ser10, Thr11, and Ser28. Interestingly, H3 phosphorylated at Ser10, Thr11, and Ser28 has been observed on genomic regions of transcriptionally active genes. Therefore, H3 phosphorylation is involved in processes requiring opposing chromatin states. The level of H3 phosphorylation is mediated by opposing actions of specific kinases and phosphatases during mitosis and gene transcription. The cellular contexts under which specific residues on H3 are phosphorylated in mitosis and interphase are known to some extent. However, the functional consequences of H3 phosphorylation are still unclear.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3