The radial–azimuthal instability of accretion disk with anomalous viscosity

Author:

Chen Yue Qi1,Jiang Wei Qun2

Affiliation:

1. Nachang University, JiangXi Technician College, Nanchang City, JiangXi Province, People’s Republic of China.

2. Department of Physics, Nanchang University, Nanchang City, JiangXi Province, People’s Republic of China.

Abstract

The stability of the accretion disk is solved by numerical simulations when the radial and azimuthal perturbations are considered, where we adopt the anomalous viscosity model, which is close to real accretion disks. The results are discussed in the inner, intermediate, and outer regions of the accretion disk, respectively. With the increase of viscosity, α, the thermal mode and the viscous mode, as well as the acoustic modes, become more unstable in the disk dominated by radiation pressure (inner region). The instability is also influenced by the azimuthal perturbation wavenumber, n. With the increase of n, the thermal mode becomes more unstable, while the in-mode and out-mode become more stable no matter if the disk is dominated by radiation pressure or by gas pressure (intermediate and outer regions). There are many differences between our results and others’ results, especially in the inner region of the disk, when the anomalous viscosity is considered.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3