Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indicesThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time.

Author:

Lazaridis David C.12,Verbesselt Jan12,Robinson Andrew P.12

Affiliation:

1. Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Parkville, Victoria 3088, Australia.

2. Remote Sensing Team, CSIRO Sustainable Ecosystems, Private Bag 10, Melbourne, Victoria 3169, Australia; Centre for Geo-Information, Wageningen University, Droevendaalsesteeg 3, 6708 PB, Wageningen, The Netherlands.

Abstract

Constructing models can be complicated when the available fitting data are highly correlated and of high dimension. However, the complications depend on whether the goal is prediction instead of estimation. We focus on predicting tree mortality (measured as the number of dead trees) from change metrics derived from moderate-resolution imaging spectroradiometer satellite images. The high dimensionality and multicollinearity inherent in such data are of particular concern. Standard regression techniques perform poorly for such data, so we examine shrinkage regression techniques such as ridge regression, the LASSO, and partial least squares, which yield more robust predictions. We also suggest efficient strategies that can be used to select optimal models such as 0.632+ bootstrap and generalized cross validation. The techniques are compared using simulations. The techniques are then used to predict insect-induced tree mortality severity for a Pinus radiata D. Don plantation in southern New South Wales, Australia, and their prediction performances are compared. We find that shrinkage regression techniques outperform the standard methods, with ridge regression and the LASSO performing particularly well.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3