SCH772984 ameliorates lipopolysaccharide-induced hypoglycemia in mice through reversing MEK/ERK/Foxo1-mediated gluconeogenesis suppression

Author:

Wang Yirong1,Qing Shuyun1,Yang Jing1,Qian Dehui2ORCID

Affiliation:

1. Department of Pharmacy, The Third People's Hospital of Chengdu, The Second Affiliated Clinical College of Chongqing Medical University, Chengdu 610014, People's Republic of China

2. Department of Cardiology, The Second Affiliated Hospital of Army Medical University, Chongqing 400037, People's Republic of China

Abstract

Lipopolysaccharide (LPS) results in a lethal hypoglycemic response. However, the main molecular mechanism involved in LPS-induced glucose metabolism disorder is poorly understood. This study intends to investigate the signaling pathways involved in LPS-induced hypoglycemia and potential efficacy of extracellular signal-regulated kinase (ERK) inhibitor SCH772984. The effects of LPS and SCH772984 on gluconeogenesis, glucose absorption, and glycogenolysis were evaluated by pyruvate tolerance test, oral glucose tolerance test, and glucagon test, respectively. After a single intraperitoneal injection of 0.5 mg/kg LPS, the mice’s blood glucose levels and gluconeogenesis ability were significantly lower than that of control group. Besides, mRNA and protein expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) decreased significantly after LPS treatment. LPS induced the phosphorylation of ERK1/2, MEK1/2 (mitogen-activated protein kinase), and Foxo1 while inhibited Foxo1 expression in the nucleus, indicating an important role of the MEK/ERK/Foxo1 signaling in the inhibition of gluconeogenesis by LPS. Furthermore, SCH772984 elevated blood glucose, increased the G6Pase and PEPCK expression, and inhibited pERK1/2 and pFoxo1 expression in LPS-induced mice. In summary, LPS inhibited gluconeogenesis and induced hypoglycemia through the MEK/ERK/Foxo1 signal pathway, and ERK inhibitor could effectively reverse decreased blood glucose in mice with LPS treatment. These findings provide a novel therapeutic target for LPS-induced hypoglycemia.

Funder

the Young Doctor Talent Incubation Program

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3