Oxidations of 17β-estradiol and estrone and their interconversions catalyzed by liver, mammary gland and mammary tumor after acute and chronic treatment of rats with indole-3-carbinol or β-naphthoflavone

Author:

Ritter Clare L,Prigge William F,Reichert Mark A,Malejka-Giganti Danuta

Abstract

Altered cytochrome P450-catalyzed metabolism of 17β-estradiol (E2) and estrone (E1) in the liver and (or) extrahepatic tissues may affect estrogen-sensitive tumorigenesis. We examined the effects of oral treatments of (i) indole-3-carbinol (I3C) at 250 or 500 mg/kg or β-naphthoflavone (β-NF) at 40 mg/kg of body weight (bw)/day from 51 to 54 days of age (acute regimen), and (ii) I3C at 250 mg/kg or β-NF at 20 mg/kg bw given 3x/week from 10 to 22 weeks of age (chronic regimen) in female Sprague-Dawley rats. We determined the effects of these treatments on the P450 content and P450 (CYP)-specific activities in the liver, P450-dependent metabolism of E2 and E1 by the liver and mammary gland, and interconversion of E1 and E2 catalyzed by 17β-hydroxysteroid dehydrogenase (17β-HSD) in these tissues and malignant mammary tumors. I3C at the two levels of acute regimen elicited similar responses. Acute and chronic treatments with I3C, but not β-NF, increased P450 content ~2-fold. I3C, and to a lesser extent β-NF, increased CYP1A1 and CYP1A2 probe activities in liver up to 117- and 27- fold, respectively, and after acute regimens, that of CYP3A by ~1.8-fold. I3C also increased activity of CYP2B up to 100-fold. Overall hepatic metabolism of E2 and E1, which was ~2-fold greater at 55 than 155 days of age, was increased (~2.8-fold) by I3C with 2-, 4-, 16α-, 6α-, 6β-, and 15α-hydroxy (OH) comprising [Formula: see text]54, 3, 2, ~2, ~5, 7, and 2%, respectively, of E1 and E2 metabolites. Acute regimens of β-NF increased 2- and 15α-OH-E2 (62 and 5% of total) from E2 and 2-, 4-, and 6α-OH-E1 + 6β-OH-E1 (32, 13, and 4% of total) from E1. Mammary gland metabolized E2 to E1 and small amounts of 15α-, 4-, 16α-, 6β-, and 6α-OH-E2. After the acute IC3 regimen, E2 was also converted to 2-OH-E2. 17β-HSD-catalyzed oxidation of E2 was favored in the liver and reduction of E1 was favored in mammary gland and tumor (= 1% of hepatic activity). An increased (~2-fold) ratio of reductive to oxidative activities in malignant mammary tumors by chronic I3C regimen may stimulate tumor growth. This is the first report showing that after chronic oral regimens, the I3C-, but not β-NF-, induced changes in CYP complement led to elevated E2 and E1 metabolism. The persistent effects of increased putative carcinogenic and estrogenic 4- and 16α-OH as well as 6α- and 6β-OH-E2 and 6β-OH-E1 might counteract those of the less estrogenic 2-OH metabolites, thus accounting for the lack of suppression of mammary tumorigenesis by I3C in our previous study.Key words: estrogen metabolism, P450, 17β-hydroxysteroid dehydrogenase, indole-3-carbinol, β-naphthoflavone.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3