Hot model of muonium formation in liquids

Author:

Walker David C,Karolczak Stefan,Gillis Hugh A,Porter Gerald B

Abstract

The mechanism of formation of muonium atoms from positive muons was studied here through measurements of the yield of diamagnetic muon states in dipolar aprotic solvents and for scavenger solutions in hexane and methanol. The results are compared with published data on common solvents covering a full range of the physicochemical properties of liquids that affect an ionic formation mechanism, namely their static dielectric constants, electron mobilities, and radiolysis yields of electrons. It is concluded that muonium is not formed by a thermal charge-neutralization reaction in these chemically-active media, though that mechanism does contribute to muonium formation in inert media like liquefied noble gases. It is clear that muonium materializes on a much shorter timescale than the recently proposed "delayed" mechanism (microseconds) and the earlier "spur" model (nanoseconds). In contrast, the data referring to all these liquids are consistent with the intra-track "hot" model. This is the only Mu-formation model proposed so far in which the immediate precursors of Mu (Mu(hot)) are neither scavengable nor ionic.Key words: muonium atoms, formation mechanism, hot model, spur model, delayed-muonium-formation model, diamagnetic yields.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3