Numerical modeling of liquefaction and comparison with centrifuge tests

Author:

Byrne Peter M,Park Sung-Sik,Beaty Michael,Sharp Michael,Gonzalez Lenart,Abdoun Tarek

Abstract

The prediction of liquefaction and resulting displacements is a major concern for earth structures located in regions of moderate to high seismicity. Conventional procedures used to assess liquefaction commonly predict the triggering of liquefaction to depths of 50 m or more. Remediation to prevent or curtail liquefaction at these depths can be very expensive. Field experience during past earthquakes indicates that liquefaction has mainly occurred at depths less than about 15 m, and some recent dynamic centrifuge model testing initially appeared to confirm a depth or confining-stress limitation on the occurrence of liquefaction. Such a limitation on liquefaction could greatly reduce remediation costs. In this paper an effective stress numerical modeling procedure is used to assess these centrifuge tests. The results indicate that a lack of complete saturation and densification at depth arising from the application of the high-acceleration field are largely responsible for the apparent limitation on liquefaction at depth observed in some centrifuge tests.Key words: liquefaction, dynamic centrifuge modeling, numerical modeling, depth limitation.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3