Affiliation:
1. Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada.
2. School of the Environment, Laurentian University, Sudbury, ON P3E 2C6, Canada.
3. Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada.
Abstract
Environmental oxidation and microbial metabolism drive production of acid mine drainage (AMD). Understanding changes in the microbial community, due to geochemical and seasonal characteristics, is fundamental to AMD monitoring and remediation. Using direct sequencing of the 16S and 18S rRNA genes to identify bacterial, archaeal, and eukaryotic members of the microbial community at an AMD site in Northern Ontario, Canada, we found a dynamic community varying significantly across winter and summer sampling times. Community composition was correlated with physical and chemical properties, including water temperature, pH, conductivity, winter ice thickness, and metal concentrations. Within Bacteria, Acidithiobacillus was the dominant genus during winter (11%–57% of sequences) but Acidiphilium was dominant during summer (47%–87%). Within Eukarya, Chrysophyceae (1.5%–94%) and Microbotrymycetes (8%–92%) dominated the winter community, and LKM11 (4%–62%) and Chrysophyceae (25%–87%) the summer. There was less diversity and variability within the Archaea, with similar summer and winter communities mainly comprising Thermoplasmata (33%–64%) and Thermoprotei (5%–20%) classes but also including a large portion of unclassified reads (∼40%). Overall, the active AMD community varied significantly between winter and summer, with changing community profiles closely correlated to specific differences in AMD geochemical and physical properties, including pH, water temperature, ice thickness, and sulfate and metal concentrations.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献