Pharmacological properties of excitatory amino acid induced changes in extracellular calcium concentration in rat hippocampal slices

Author:

Arens J.,Stabel J.,Heinemann U.

Abstract

We have studied extracellular ionic changes induced by iontophoretic application of excitatory amino acids in rat hippocampal slices. In contrast to kinetics of changes in [Ca2+]o, kinetics of changes in [K+]o, [Na+]o, [Cl]o as well as in extracellular space size were comparable for different glutamate receptor agonists. Thus, α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA), quisqualate (quis), and kainate caused reductions in [Ca2+]o followed by an increase of [Ca2+]o above baseline, whereas glutamate, aspartate, N-methyl-D-aspartate (NMDA), and DL-homocysteic acid caused only reductions in [Ca2+]o. After blocking the NMDA receptors with ketamine and 2-amino-5-phosphonovaleric acid (2-APV), glutamate-induced decreases in [Ca2+]o were followed by an overshoot. Reductions of the transmembrane Na+gradient by lowering [Na+]o, blocking of the Na+–K+ ATPase by lowering [K+]o, and application of ouabain blocked the overshoots after quis application, whereas vanadate, a blocker of the Ca2+–Mg2+ ATPase, had no effects. Lithium enhanced the reductions in [Ca2+]o and blocked the overshoots. Amiloride also reduced the overshoots. All organic Ca2+ entry blockers diminished reductions of [Ca2+]o but increased the overshoots. Inorganic Ca2+ antagonists had variable effects. Ni2+ had similar effects as the organic Ca2+ entry blockers while Cd2+ reduced both the [Ca2+]o decreases as well as the subsequent overshoots. Co2+ had initially a similar action as Ni2+. With prolonged application, [Ca2+]o decreases became augmented and, during wash, overshoots could no longer be elicited. We suggest that the overshoots in [Ca2+]o are due to a combined effect of extracellular space shrinkage and activation of the Na+/Ca2+ exchanger. This would imply that NMDA receptor activation blocks extrusion of Ca2+ from the cells. We tested the hypothesis that quis-induced intracellular Ca2+ release and extrusion of Ca2+ from the cells contributed to the overshoots. Dantrolene was without effect on the quis-induced signals, while ryanodine reduced the overshoots. Caffeine on the other hand diminished the [Ca2+]o decreases with no effects on the overshoots. To test for possible second messenger routes by which NMDA receptor activation might slow Ca2+ extrusion from cells, we investigated the effects of arachidonic acid and N-monomethyl-D-arginine on the quis-induced signals. While these agents reduced decreases in [Ca2+]o, they had no clear effects on the overshoots. Thus a possible route by which NMDA receptor activation may affect Ca2+ extrusion from cells has still to be elucidated.Key words: glutamate, quisqualate, N-methyl-D-aspartate, Ca2+ concentration, hippocampus, rat.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3