Purification and Properties of Acid Phosphatase I From the Cellular Slime Mold Polysphondylium pallidum

Author:

Horgen Ilona A.,Horgen Paul A.,O'Day Danton H.

Abstract

A procedure for the purification of a phosphomonoesterase, designated as acid phosphatase I, from the cellular slime mold Polysphondylium pallidum is described. Ammonium sulfate fractionation, gel filtration, and anion-exchange chromatography are utilized in this purification method. The enzyme was judged to be homogeneous by gel filtration and by acylamide gel electrophoresis. The molecular weight of the enzyme was estimated by gel filtration and density gradient centrifugation to be 150 000 daltons. Acid phosphatase I was shown to be relatively heat stable, and it lost no activity when kept at 4 °C, pH 7.35, for over 30 days. The pH optimum was 3.5, but the enzyme was found to be more stable when kept near neutral hydrogen ion concentrations. P. pallidum acid phosphatase I was most effective using the natural substrates, fructose-1,6-pbosphate, β-glycerolphosphate, and 5′-mononucleotides. Various compounds including known phosphatase inhibitors were tested as to their effect on the activity of the enzyme. The slime-mold acid phosphatase appears in many ways to be a typical acid phosphomonoesterase.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3