Effects of genetic polymorphisms on the sulfation of dehydroepiandrosterone and pregnenolone by human cytosolic sulfotransferase SULT2A1

Author:

Abunnaja Maryam S.1,Alherz Fatemah A.1,El Daibani Amal A.1,Bairam Ahsan F.12,Rasool Mohammed I.13,Gohal Saud A.1,Kurogi Katsuhisa14,Suiko Masahito4,Sakakibara Yoichi4,Liu Ming-Cheh1

Affiliation:

1. Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA.

2. Department of Pharmacology, College of Pharmacy, University of Kufa, Najaf, Iraq.

3. Department of Pharmacology, College of Pharmacy, University of Karbala, Karbala, Iraq.

4. Biochemistry and Applied Biosciences, University of Miyazaki, Miyazaki 889-2192 Japan.

Abstract

The cytosolic sulfotransferase (SULT) SULT2A1 is known to mediate the sulfation of DHEA as well as some other hydroxysteroids such as pregnenolone. The present study was designed to investigate how genetic polymorphisms of the human SULT2A1 gene may affect the sulfation of DHEA and pregnenolone. Online databases were systematically searched to identify human SULT2A1 single nucleotide polymorphisms (SNPs). Of the 98 SULT2A1 non-synonymous coding SNPs identified, seven were selected for further investigation. Site-directed mutagenesis was used to generate cDNAs encoding these seven SULT2A1 allozymes, which were expressed in BL21 Escherichia coli cells and purified by glutathione-Sepharose affinity chromatography. Enzymatic assays revealed that purified SULT2A1 allozymes displayed differential sulfating activity toward both DHEA and pregnenolone. Kinetic analyses showed further differential catalytic efficiency and substrate affinity of the SULT2A1 allozymes, in comparison with wild-type SULT2A1. These findings provided useful information concerning the effects of genetic polymorphisms on the sulfating activity of SULT2A1 allozymes.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3