Affiliation:
1. UNC–Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.
Abstract
Prenatal alcohol exposure (PAE) remains a leading preventable cause of structural birth defects and permanent neurodevelopmental disability. The chicken (Gallus gallus domesticus) is a powerful embryological research model, and was possibly the first in which the teratogenicity of alcohol was demonstrated. Pharmacologically relevant exposure to alcohol in the range of 20–70 mmol/L (20–80 mg/egg) disrupt the growth of chicken embryos, morphogenesis, and behavior, and the resulting phenotypes strongly parallel those of mammalian models. The avian embryo’s direct accessibility has enabled novel insights into the teratogenic mechanisms of alcohol. These include the contribution of IGF1 signaling to growth suppression, the altered flow dynamics that reshape valvuloseptal morphogenesis and mediate its cardiac teratogenicity, and the suppression of Wnt and Shh signals thereby disrupting the migration, expansion, and survival of the neural crest, and underlie its characteristic craniofacial deficits. The genetic diversity within commercial avian strains has enabled the identification of unique loci, such as ribosome biogenesis, that modify vulnerability to alcohol. This venerable research model is equally relevant for the future, as the application of technological advances including CRISPR, optogenetics, and biophotonics to the embryo’s ready accessibility creates a unique model in which investigators can manipulate and monitor the embryo in real-time to investigate the effect of alcohol on cell fate.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献