63Ni β range and backscattering in confined geometries

Author:

Siu K. W. Michael,Aue Walter A.

Abstract

To know the spatial distribution of ion pairs resulting from 63Ni β radiation in the gas phase is important for a variety of theoretical and practical reasons, in particular those concerning the electron capture detector. Literature estimates of this distribution vary by about one order of magnitude, yet this parameter is necessary for the modelling of this detector. The 63Ni-induced, initial ion pair distribution was therefore measured in a variety of gases with two techniques: a conventional one based on the electrical saturation current at variable interelectrode distances, and an unconventional one based on luminescence from a plastic scintillator. The data are analyzed in terms of two ranges, d50 and d95, that describe the distances from a planar radioactive foil within which 50% and 95% of the total gas-phase ionization occur. The data from the electrical measurement show unexpected evidence of strong β backscattering and secondary electron emission from the counter-electrode. Under these (non-exponential) conditions, d50 values in the common detector gases nitrogen and argon/methane vary from 0.5 to 1.0 mm, depending on the nature of the counter-electrode. Calculations based on the quasi-exponential range found at longer distances in electrical measurements yield values of about 2.5 mm (which are low because of geometric measurement bias). In contrast, the data from the luminescence measurement are almost completely exponential and d50 values for argon (+5% methane) and nitrogen are 2.8 and 3.8 mm, respectively. The d95 values vary from 12 to 16 mm for the luminescence, to 6 and 9 mm for the (less reliable) electrical measurement; all at ambient conditions. The luminescence data are considered closer to the "true" (unimpeded) charge distribution, while the ionization data may be closer to the initial charge topography inside an electron capture detector of confining geometry. All range data, however, are short enough to advise modelling the detector as a system with strongly heterogeneous charge distribution. No evidence was found for some of the very large range estimates found in the literature.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3