An empirically corrected quantum mechanical potential energy curve of internal rotation of acryloyl fluoride, CH2=CH-CF=O

Author:

De Maré George R.,Panchenko Yurii N.,Abramenkov Alexander V.,Bock Charles W.

Abstract

The geometrical parameters of acryloyl fluoride were optimized completely at the MP2/6-31G* computational level for 17 points on the internal rotation potential energy (IRPE) curve for rotation around the formal single carbon–carbon bond. The expansion coefficients of the reduced rotational constant function F(φ) and the four, five, and six-term expansions of the IRPE function,[Formula: see text]were obtained from these data. The theoretical IRPE functions were then refined using only the experimental torsional transition frequencies in both the s-trans and s-cis wells. The IRPE functions obtained are compared with those in the literature, calculated at lower levels of theory in both the rigid and nonrigid rotation approximations. The best representation of the refined IRPE function is given by the six-term expansion with V1 = 71.7, V2 = 1944.8, V3 = 113.0, V4 = −122.8, V5 = −8.7, and V6 = 12.5 cm−1, respectively. From this IRPE function, one correctly predicts the s-trans conformer to be more stable with ΔH0 = 168 cm−1. The barrier to rotation from the s-trans to the s-cis positions, ΔH#, is 2048 cm−1 at 88° from the s-trans well. The advantages of using the nonrigid rotation approximation, based on high-quality quantum mechanical calculations that include correlation effects, to construct the effective IRPE function for molecules are emphasized.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3