Characterization of cyclic AMP-regulated chloride conductance in the pigmented rabbit conjunctival epithelial cells

Author:

Shiue Michael H.I,Gukasyan Hovhannes J,Kim Kwang-Jin,Loo Donald D.F,Lee Vincent H.L

Abstract

We have previously reported that the pigmented rabbit conjunctiva is a Cl–secreting tissue, subject to cAMP, Ca2+, and PKC modulation. The present study was conducted to characterize, at the cellular and molecular levels, cAMP-regulated Cl–channels in rabbit conjunctival epithelial cells. cAMP-inducible Cl–channel properties were evaluated by monitoring the whole-cell currents using patch clamp techniques. Results showed that 10 μM forskolin significantly stimulated a glibenclamide-inhibitable whole-cell conductance by approximately five-fold. Furthermore, reduction of the Cl–concentration in the bathing solution through partial substitution of NaCl with Na-isethionate resulted in a rightward shift of the reversal potential for both baseline and forskolin-stimulated whole-cell currents from 0 to values close to the theoretical Cl–reversal potential predicted by the Nernst equation. Western blot analysis with a monoclonal antibody recognizing the epitope in the C-terminus of the cystic fibrosis transmembrane conductance regulator (CFTR) showed a positive band at its molecular weight, approximately 170 kD. Immunostaining under confocal microscopy revealed a CFTR specific signal in the apical sections of primary conjunctival epithelial cells. In addition, RT-PCR detection amplified a cDNA fragment 100% identical to the predicted portion of the cloned rabbit CFTR message. The stage is thus set for determining the extent of CFTR contribution to cAMP-regulated Cl–conductance in pigmented rabbit conjunctival epithelial cells.Key words: conjunctiva, chloride current, CFTR, chloride channel, patch clamp, cyclic AMP, whole-cell.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3