Smooth muscle contractility and calcium channel density in hibernating and nonhibernating animals

Author:

Wolowyk M. W.,Howlett S.,Gordon T.,Wang L. C. H.

Abstract

Hibernating animals consistently survive prolonged periods of cold with body temperatures near the freezing point. Previous studies have suggested that regulation of calcium influx may be a fundamental cellular mechanism for cold tolerance in hibernating species. The present study was undertaken to compare (i) the calcium dependence of contractility and (ii) [3H]nitrendipine binding in homogenates of ileal longitudinal smooth muscle from the nonhibernating guinea pig (Cavia porcellus) and a hibernator, the ground squirrel (Spermophilus richardsonii). The contractility studies indicate that both the activation threshold for calcium and the concentration–response curve were shifted to the right in ground squirrel when compared with guinea pig. The binding site density in ground squirrel muscle was about an order of magnitude less than in guinea pig (Bmax = 10 ± 2 (n = 12) and 86 ± 6 fmol/mg protein (n = 5), respectively). These results indicate that ground squirrel tissues are less sensitive to external calcium and clearly have fewer calcium channels than the smooth muscle of the non-hibernator. The results continue to support the hypothesis that cold tolerance in hibernating species involves calcium homeostatic control mechanisms.Key words: smooth muscle, calcium, [3H]nitrendipine binding.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3