Depositional controls on the magnetic characteristics of lodgement tills and other glacial diamict facies

Author:

Eyles N.,Day T. E.,Gavican A.

Abstract

Genetic interpretation of massive, unstructured diamict and diamictite facies is a commonly encountered problem faced by sedimentologists. Data are presented concerning the magnetic characteristics, namely, anisotropy of magnetic susceptibility (AMS) and natural remanent magnetism (NRM) of facies deposited by (1) lodgement processes at a glacier base (lodgement till) and (2) subaqueously by pelagic mud deposition and ice-rafting ("rain-out" diamicts). Lodgement tills have an NRM that is distorted around the geomagnetic pole position to form a girdle approximately 90° in length, either transverse or parallel to ice flow direction. This distension appears to be the result of subglacial shear processes because other diamicts, deposited passively by melt-out below stagnant ice and modelled by a laboratory experiment, show a nondeformed NRM clustering around the geomagnetic pole. The AMS data show that lodgement tills have only a weakly orientated magnetic microfabric.Glaciolacustrine "rain-out" diamicts show a precise NRM clustering as in marine and lacustrine muds. This reflects the lack of nongeomagnetic forces acting upon magnetic grains during deposition followed by postdepositional remanence "locking" at depth in the sediment column. These facies show both random AMS fabrics, typical of undisturbed pelagic sediments, and preferred microfabrics resulting from local sediment flow on the lake floor.It is concluded that NRM and AMS offer considerable assistance in genetic studies of massive diamict facies; AMS is particularly useful because the large populations of samples can be rapidly processed. The wider use of this technique by sedimentologists—for investigating other sedimentary facies types—is anticipated.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A magnetic fabric study of the origin of englacial debris bands at Fláajökull, Southeast Iceland;Cold Regions Science and Technology;2024-01

2. Paleomagnetism of the La Mora Formation: Late Triassic-Late Jurassic paleolatitudinal record for Southern Mexico and its Gondwanan disconnection;International Geology Review;2022-09-13

3. Basin Mapping Methods;Springer Textbooks in Earth Sciences, Geography and Environment;2022

4. Facies Models;Springer Textbooks in Earth Sciences, Geography and Environment;2022

5. Facies Analysis;Springer Textbooks in Earth Sciences, Geography and Environment;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3