Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorphaandDreissena bugensis): implications for trophic dynamics

Author:

Ackerman Josef Daniel

Abstract

Fluid dynamic forces were found to significantly affect the ability of freshwater dreissenid mussels (Dreissena polymorpha and Dreissena bugensis) to clear plankton. Tests conducted in a flow chamber at <1 cm·s-1were consistent with published clearance rates from standard tests involving unstirred containers (i.e., 60-70 mL· mussel-1·h-1for 11-mm-long mussels). Increasing ambient velocity up to ~10 cm·s-1led to clearance rates at least twice those of standard testing methods. Higher velocities (~20 cm·s-1) were inhibitory and resulted in reduced clearance rates. There were no detectable differences in the clearance rates of D. polymorpha and D. bugensis of equal size tested at ~10 cm·s-1, but large mussels had greater clearance rates than small ones. These results were found to be consistent with observations from marine bivalves and indicate that fluid dynamic issues are of importance in freshwater ecosystems, especially those that are shallow and (or) flowing. The trophic dynamics of these ecosystems will be better understood when the effects of fluid dynamics on the organism's ability to filter feed and the local delivery of seston through turbulent mixing are considered.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3