Role of silica nanoparticles in enhancing drought tolerance of cereal crops

Author:

SULAIMAN ,EL-BELTAGI Hossam S.,SHEHATA Wael F.,AHMAD Aziz,HASSIM Muhamad F.N.,HADID Maha L.

Abstract

Cereal crops are essential for providing essential nutrients and energy in the daily human diet. Additionally, they have a crucial role as a significant constituent of cattle feed, hence enhancing meat production. Drought, being an abiotic stressor, adversely affects the growth and yield of numerous crops on a global scale. This issue poses a significant and pressing obstacle to maintaining global cereal crop production and ensuring food security. Nanoparticles have become a valuable resource for improving cereal crop yield and productivity under ongoing rapid climate change and escalating drought conditions. Among these, silica nanoparticles (SiNPs) have demonstrated their potential for agricultural applications in regions with limited water availability. Drought stress has detrimental effects on cereal crops, impacting their growth, metabolic, and physiological processes, hampering water and nutrient absorption, disrupting cellular membranes, damaging the photosynthetic apparatus, and reducing antioxidant activities by altering gene expression. SiNPs help preserve cellular membranes, regulate water balance, and improve water and nutrient absorption, resulting in a substantial enhancement in plant growth under water-deficit conditions. SiNPs also protect the photosynthetic system and enhance its efficiency, facilitate the accumulation of phenolics, hormones, osmolytes, antioxidant activities, and gene expression, thus empowering plants with increased resistance to drought stress. Moreover, SiNPs decrease leaf water loss by promoting stomatal closure, primarily by fostering the accumulation of abscisic acid (ABA) and mitigating oxidative stress damage by activating the antioxidant defence system and reducing reactive oxygen species (ROS). However, a limited number of studies examine the role of SiNPs in cereal crops under drought stress conditions. In this review, we highlighted the promising potential of SiNPs to improve cereal crop resilience by changing morpho-histological traits, antioxidant properties, and gene expression to maintain food security in drought-prone areas. This study will aid researchers in using SiNPs as an environmentally benign way to improving drought resistance in cereal crops in order to fulfill global food supply needs.

Publisher

University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca

Subject

Horticulture,Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3