Some semilattices of definable sets in continuous logic

Author:

Hanson JamesORCID

Abstract

In continuous first-order logic, the union of definable sets is definable but generally the intersection is not. This means that in any continuous theory, the collection of $\varnothing$-definable sets in one variable forms a join-semilattice under inclusion that may fail to be a lattice. We investigate the question of which semilattices arise as the collection of definable sets in a continuous theory. We show that for any non-trivial finite semilattice $L$ (or, equivalently, any finite lattice $L$), there is a superstable theory $T$ whose semilattice of definable sets is $L$. We then extend this construction to some infinite semilattices. In particular, we show that the following semilattices arise in continuous theories: $\alpha+1$ and $(\alpha+1)^\ast$ for any ordinal $\alpha$, a semilattice containing an exact pair above $\omega$, and the lattice of filters in $L$ for any countable meet-semilattice $L$. By previous work of the author, this establishes that these semilattices arise in stable theories. The first two are done in languages of cardinality $\aleph_0 + |\alpha|$, and the latter two in countable languages.

Publisher

Journal of Logic and Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3