Exploration of Novel Mono Hydroxamic Acid Derivatives as Inhibitors for Histone Deacetylase Like Protein (HDLP) by Molecular Dynamics Studies

Author:

Parthiban Gunasingham,Dushanan Ramachandren,Weerasinghe Samantha,Dissanayake Dhammike,Senthilnithy Rajendram

Abstract

The acetylation modification process of histone has an essential role in the epigenetic regulation of gene expression. This process is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDACs are thought to be vital for cell function. Particularly, higher HDAC expression is frequent in various cancers, resulting in the dysregulation of several target genes involved in cell proliferation, differentiation, and survival. In this study, the inhibitory feasibility of several HDAC inhibitors was investigated, including vorinostat (SAHA), N-hydroxy-3-phenylprop-2-enamide (CPD1), N-hydroxy-3-(pyridine-4-yl)prop-2-enamide (CPD2), N-hydroxy-3-(pyridine-2-yl)prop-2-enamide (CPD3), 4-(diphenylamino)-N-(5-(hydroxyamino)-5-oxopentyl)benzamide (CPD4), 2-(6-(((6-fluoronaphthalen-2-yl)methyl)amino)-3-azabicyclo[3.1.0]hex-3-yl)-N-hydroxypirimidine-5-carboxamide (CPD5), and N-(3-aminopropyl)-N-hydroxy-2-((naphthalene-1-yloxy)methyl)oct-2-enediamide (CPD6). By examining the stability of the enzyme, positional stability of the individual amino acids, and binding energies of HDLP-inhibitor complexes, the inhibitory feasibility was assessed. The complexes of the HDLP enzyme with SAHA, CPD4, CPD5, and CPD6 had higher stability than the other studied complexes, according to the results of trajectory analysis and the Ramachandran plot. Based on the calculated MM-PBSA binding free energies, the stability of the HDLP enzyme followed this order CPD4 > CPD5 > SAHA > CPD6 > CPD2 > CPD3 > CPD1. The drugability values followed the same trend as the previous ones. Based on the obtained in silico results, CPD4, CPD5, and CPD6 were discovered to be possible lead compounds as reference inhibitors of SAHA.

Publisher

Universitas Gadjah Mada

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3