Implications of Temperature for the Modification of High-Overmature Shale Reservoirs: Experimental and Numerical Analysis

Author:

Chen Xiangru1ORCID,Tang Xin2ORCID,Liu Cheng3,Zhou Xiaoyi1,Guo Sen4,Yin Hong1

Affiliation:

1. School of Civil Engineering, Chongqing Three Gorges University

2. School of Civil Engineering, Chongqing Three Gorges University; Chongqing Three Gorges Reservoir Bank Slope and Engineering Structure Disaster Prevention and Control Engineering Technology Research Center (Corresponding author)

3. CNOOC Energy Technology & Services Ltd, Key Laboratory of Exploration & Development of Unconventional Resources

4. China University of Mining and Technology

Abstract

Summary High-temperature pore reconstruction technology is a reservoir reconstruction measure that has emerged in recent years. It is of great significance to study the variation in pore structure characteristics of shale under high temperature for reservoir reconstruction. To study the effect of high temperature on shale pores, scanning electron microscopy (SEM) experiments and fluid injection experiments were used to analyze the variation of pore structure characteristics under high temperature. Studies have shown that temperature has a great influence on the morphology and distribution characteristics of shale pores. In particular, there is a temperature between 300°C and 400°C that is suitable for modifying pores. The distribution characteristics, surface area, and volume of pores vary dramatically under this temperature threshold. The pore morphology and distribution characteristics changed from small and sparse to large and dense. The Brunauer-Emmett-Teller (BET) surface area increased by 95%. The cumulative surface area of Barrett-Joyner-Halenda (BJH) adsorption and desorption increased by 71.7% and 72%, respectively. The pore volume of the 2-nm to 20-nm pore size increased by 63.2%. The pore volume of pore sizes greater than 20 nm increased by 191.6%. The pore variation characteristics were in line with the typing law, and the fitting result R2 ranged from 0.92201 to 0.99882.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3