In Situ Stress Magnitude and Orientation in an Onshore Field, Eastern Niger Delta: Implications for Directional Drilling

Author:

Abija Abija1,Ankwo Fidelis1,Tse Tse1

Affiliation:

1. Akaha Celestine/Dept. of Geology, University of Port Harcourt

Abstract

Abstract In situ stress magnitude and orientation are necessary for oil and gas field development planning to achieve optimal well placement whether vertical, deviated or horizontal, wellbore stability analysis for safe and stable drilling to reduce non-productive time, fault stability and cap rock integrity modeling for CO2 geosequestration and stage placement of hydraulic fracture for optimum production in unconventional plays. These were evaluated using wireline logs, leak off test and vertical seismic profile data in an onshore field, Eastern Niger Delta whose stratigraphic sequence is the typical interlayered, normal to abnormal pressured shales and sandstones of the Agbada Formation. The vertical stress magnitude ranges from 23.08 - 25.57 MPa/km, minimum effective horizontal stress from 13.80 - 14.03 MPa/km and maximum effective horizontal stress from 16.06 - 17.65 MPa/km inferring a normal fault stress regime. The minimum horizontal stress orientation varies from 16° - 33° forming the most stable orientation for geosteering a directional well while the maximum horizontal stress orientation is N60°E - N123°E in agreement with the regional fault orientations in the Niger Delta. ENE – WSW, WNW – ESE and other maximum horizontal stress orientations suggest multiple sources of stress, and in situ stress rotation across fault surfaces depicts wellbore instability issues. Structural evolution depicts NE – SW and NW-SE trending faults in the direction of the maximum horizontal stress. Directional well inclination angles of 16° and 33° were predicted in wells 10 and 11 respectively and mud weight window predicted using 2D Mohr - Coulomb failure criterion yielded an optimum mud weight window of 10 - 14.0ppg with overpressure accounting for mud weights as high as 25ppg and minimum mud weight exceeding the maximum mud weight in some sections.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3