Influence of Pressure Difference Between Reservoir and Production Well on Steam-Chamber Propagation and Reservoir-Production Performance

Author:

Xiong Hao1,Huang Shijun2,Devegowda Deepak1,Liu Hao2,Li Hao1,Padgett Zack1

Affiliation:

1. University of Oklahoma

2. China University of Petroleum, Beijing

Abstract

Summary Steam-assisted gravity drainage (SAGD) is the most-effective thermal recovery method to exploit oil sand. The driving force of gravity is generally acknowledged as the most-significant driving mechanism in the SAGD process. However, an increasing number of field cases have shown that pressure difference might play an important role in the process. The objective of this paper is to simulate the effects of injector/producer-pressure difference on steam-chamber evolution and SAGD production performance. A series of 2D numerical simulations was conducted using the MacKay River and Dover reservoirs in western Canada to investigate the influence of pressure difference on SAGD recovery. Meanwhile, the effects of pressure difference on oil-production rate, stable production time, and steam-chamber development were studied in detail. Moreover, by combining Darcy's law and heat conduction along with a mass balance in the reservoir, a modified mathematical model considering the effects of pressure difference is established to predict the SAGD production performance. Finally, the proposed model is validated by comparing calculated cumulative oil production and oil-production rate with the results from numerical and experimental simulations. The results indicate that the oil production first increases rapidly and then slows down when a certain pressure difference is reached. The pressure difference has strong effects on steam-chamber-rising/expansion stages. However, at the expansion stage, lower pressure difference can achieve the same effect as high pressure difference. In addition, it is shown that the steam-chamber-expansion angle is a function of pressure difference. Using this finding, a new mathematical model is established considering the modification of the expansion angle, which (Butler 1991) treated as a constant. With the proposed model, production performance such as cumulative oil production and oil-production rate can be predicted. The steam-chamber shape is redefined at the rising stage, changing from a fan-like shape to a hexagonal shape, but not the single fan-like shape defined by (Butler 1991). This shape redefinition can clearly explain why the greatest oil-production rate does not occur when the steam chamber reaches the caprock. Literature surveys show few studies on how pressure difference influences steam-chamber development and SAGD recovery. The current paper provides a modified SAGD production model and an entirely new scope for SAGD enhanced oil recovery (EOR) that makes the pressure difference a new optimizable factor in the field.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3