A Novel Approach for Near Wellbore Stimulation and Deposits Removal Utilizing Thermochemical Reaction

Author:

Alharith Abdullah1,Albassam Sulaiman1,Al-Zahrani Thamer1

Affiliation:

1. Saudi Aramco

Abstract

Abstract Organic and inorganic deposits play a major issue and concern in the wellbore of oil wells. This paper discusses the utilization of a new and novel approach utilizing a thermochemical recipe that shows a successful impact on both organic and inorganic deposits, as an elimination agent, and functions as stimulation fluid to improve the permeability of the near wellbore formation. The new recipe consists of mixing nitrite salt with sulfamic acid in the wellbore at the target zone. The product of this reaction includes heat, acidic salt, and nitrogen gas. The heat of the reaction is enough to liquefy the organic deposits, and the acidic salt will tackle the carbonate scale in the tube and will increase the permeability of the near wellbore area. The nitrogen gas is an inert gas; it will not affect the reaction and will help to flow back the well after the treatment. The experimental work shows an increment in the temperature by 65 °C when mixing the two chemicals. The test was conducted at room conditions and the temperature reached around 90 °C. Adding another 65 °C to the wellbore temperature is enough to melt asphaltene and wax, the acidic salt tackles carbonate scale. As a result, the mixture works on eliminating both the organic and inorganic deposits. The permeability of the limestone sample shows an increment of 65% when treated by the mixture of the reaction recipe. The uniqueness of the new thermochemical recipe is the potential of performing three objectives at the same time; the heat of the reaction removes the organic deposits in the wellbore, the acidic salt tackles carbonate scale, and improves the permeability of the near wellbore zone.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3