Exploring Innovative Applications of Evaporative Cooling for High-Total-Dissolved-Solids Produced-Water Treatment

Author:

Mathews Tanya A.1,Kaishentayev Damir1,Augsburger Nicolas2,Lefers Ryan3ORCID,Hascakir Berna4ORCID

Affiliation:

1. Texas A&M University

2. King Abdullah University of Science and Technology; RedSea Science and Technology Company

3. 3 RedSea Science and Technology Company

4. Texas A&M University (Corresponding author)

Abstract

Summary This research delves into the pioneering application of evaporative cooling (EC) to address the challenge of reducing total dissolved solids (TDS) in produced water generated during hydraulic fracturing operations in the Permian Basin. In this study, we used a meticulously designed laboratory-scale EC system comprising three cooling pads, a fan, a water reservoir, and a pump. Through a systematic series of experiments, both synthetic and authentic produced-water samples were treated, shedding light on the potential of this novel approach. The EC system efficiently processed untreated produced water, circulating it through the cooling pads, all while closely monitoring crucial variables such as inlet and outlet temperatures, relative humidity, and remaining water volume, utilizing a state-of-the-art temperature and humidity meter. Control experiments were systematically conducted to probe the influence of varying salinities, achieved by introducing NaCl into distilled water, encompassing a wide range from 0 ppm to 70,000 ppm. In addition, we extended our evaluation to real produced-water samples collected from diverse regions within the Permian Basin (Delaware, Northern Midland, and Southern Midland), reflecting the system’s capability to manage high salinity and the diverse impurities inherent to oil and gas production. A comparative analysis of energy consumption was undertaken, positioning EC against conventional thermal evaporation techniques. The findings revealed a compelling insight that differences in EC efficiency between synthetic and real oilfield brines were primarily attributed to the presence of sodium (Na+) and chlorine (Cl-) contents rather than the overall TDS concentration. Across all experiments, the system consistently achieved remarkable TDS removal efficiencies, hovering around the 100% mark for both synthetic and authentic produced-water samples. Moreover, the study unveiled a significant advantage of EC, as it proved to be significantly less energy-intensive when juxtaposed with conventional thermal evaporation methods. In addition, our experiments revealed that divalent ions like CaCl2 tend to lower the treatment efficiency compared to monovalent ions, adding a crucial dimension to our understanding of EC in water treatment. The EC system demonstrated remarkable efficiency, achieving nearly 100% TDS removal in both synthetic and real samples while being significantly less energy-intensive than conventional thermal evaporation methods. This research underscores EC’s potential as an effective, sustainable, and economical solution for high-TDS water treatment, with promising applications in industrial settings. The study also draws parallels between EC and air conditioning systems, suggesting its versatility in various industrial applications.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3