Real Time Well Diagnostic Using Slick Line Fiber-Optic Distributed Temperature Sensors: West Venezuela Applications

Author:

Gonzalez Yosmar J.1,Azuaje Andrick Jose2,Duarte Teodoro3,Sapon Ronaldo3,Madariaga Milena Nidia4,Rubio Erismar Adorhi4,Montoya Cesar4,Martinez Maryvi Yabet5,Castillo Saluzzo Gypsy Liliana1,O'Shaughnessy P.1,Perez Padron Miguel Angel1,Berbin Alexander1

Affiliation:

1. Schlumberger

2. Petrobras Energia de Venezuela

3. Perenco

4. Petroleos de Venezuela S.A.

5. Petroleos de Venezuela S.A

Abstract

Abstract Conventional slick-line temperature surveys enable successive temperature measurements at pre-determined depth stations along the well-bore. This method has two major drawbacks. The wellbore fluid flow dynamics impact the temperature accuracy while the uncertainty in depth leads to erroneous conclusions on spatial temperature distribution along the wellbore. Remedial actions based on these temperature measurements do not always help optimize productivity or injectivity. To overcome these measurement uncertainties and correctly evaluate the gas-lift system performance for the oil producer wells or to identify temperatures anomalies, such as flow behind casing for water injection wells, continuous temperature measurements with time and depth are needed. The slick-line fiber optics distributed temperature sensors technology presented in this paper measure simultaneous temperature traces along the well-bore with time. This is widely used in oil wells located at Maracaibo Lake, where approximately 95% of the wells are produced using gas-lift and also applied in La Concepcion water injection wells for wellbore integrity. There are technical papers on fiber- optic technology applications as a qualitative monitoring tool but very few case histories where slick-line is used as the method of fiber deployment. This paper will describe eight success histories where fiber-optic sensors have been deployed using slick-line. These case studies are grouped as follows: Gas-Lift System Evaluation in which four wells were subject to analysis: Completion leakages detection in producers and injectors; Identification of water entry as well as channeling of water behind casing. This paper will also demonstrate the application of this technology to implement production enhancement techniques. The use of this technology for operational flexibility, time saving and data quality will be compared to conventional temperature logging. In addition, it will show how environmental risks are eliminated by deploying fiber on slick-line for leak detection services. Introduction Capturing accurate fluid temperature profiles in a production or injection well is a challenging task, owing to complex interaction of wellbore fluids with its surroundings 1. Qualitative analysis of conventional logs in Maracaibo Lake and La Concepcion confirmed that the gathered information was limited for efficient gas-lift system evaluation or wellbore surveillance, because the standard procedures rely solely on temperature measurements at discrete intervals in a limited period of time. The case studies described in this paper are on the basis of eight field operations using fiber-optic technology as a slickline intervention in brownfield environments. The jobs conducted in four of the wells were primarily for gas-lift system evaluation, where the wells were designed for continuous-flow gas-lift operation. However, the optimal lift performance of these wells was affected by unstable flow conditions typically associated with incorrect valve port diameter size, high water content, lower API gravity oil, more than one valve injecting at a time or variations of gas-lift injection rate due to subcritical flow conditions at the point of operation 2.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3