Pressure Drawdown and Buildup in the Presence of Radial Discontinuities

Author:

Bixel H.C.1,Van Poollen H.K.1

Affiliation:

1. Marathon Oil Co., Littleton, Colo.

Abstract

Abstract A treatment is given of the transient pressure behavior of a well located at the center of a circular region surrounded by a radial discontinuity. On either side of the discontinuity, the values of permeability, viscosity, compressibility and porosity are uniform but may be different from those on the other side of the discontinuity. The results are obtained by solving a pair of finite difference equations. The numerical solution to these equations is obtained using a digital computer. The results are compared with previously published, approximated analytical solutions to the same problem. Solutions, presented graphically, show pressure decline for constant rate fluid production. The range of variables studied include dimensionless time from 0.001 to 100 and storage capacity ratio from 0.001 to 1,000. The well behaves as if it were in an infinite reservoir for dimensionless times less than 0.25. Reservoir properties near the well can be estimated in the usual manner. An overlay technique is used to match an experimental curve with one of the theoretical curves. It is possible to estimate the distance to a discontinuity by substituting the actual time t and the corresponding dimensionless time tD at which a match occurs into the equation a=(0.000264 tkI/tD fI µIcI)1/2, where kI/fIµIcI is the diffusivity near the well, and may be estimated from data taken at early time. Several buildup curves are computed. These curves show that for early shut-in times, correct values for transmissibility are obtained from conventional analysis. However, erroneous values of static reservoir pressure are obtained unless data at large shut-in times are taken. INTRODUCTION A mathematical treatment of the transient pressure response of a well located at the center of a region bounded by a circular discontinuity is given. Within a region (Fig. 20) the properties of both the rock and the fluid are considered to be constant on either side of the discontinuity. While these properties are considered constant, they may be different on opposite sides of the discontinuity. A discontinuity of this type could be a fluid-fluid contact or a sudden change in rock characteristics such as thickness, porosity or permeability. Analytical solutions to this problem are available.1-3 However, they are so involved that they are of little practical use. An approximate solution1 is available but the range of times over which it is valid has not been specified. A numerical solution to a pair of finite difference equations is used to obtain the solution given in this paper. PREVIOUS WORK One of the first solutions to the problem was published by William Hurst.1 Hurst considered unsteady-state flow of fluids through two sands in series with different mobilities in each sand. He used Laplace transforms to obtain a solution for a single well located at the center of the circle enclosing the first of the two sands. In this case, the solution for the pressure change in Region I (Fig. 20) is2Equation 1 for r a.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3