Interaction between Hydraulic Fracture and Pre-Existing Fracture under Pulse Hydraulic Fracturing

Author:

Wei Chao1,Zhang Bo2,Li Shucai1,Fan Zhixin1,Li Chengxin1

Affiliation:

1. Shandong University

2. Shandong University (Corresponding author)

Abstract

Summary Pulse hydraulic fracturing technology can greatly improve the effect of fracture propagation in rock and form complex fracture networks in reservoirs. The interaction mechanism between hydraulic fractures and pre-existing fractures under pulse hydraulic pressure is unclear. The induced laws of pre-existing fractures on the propagation direction of hydraulic fractures under different pulse frequencies and pulse hydraulic pressures are revealed in this work. We have carried out traditional hydraulic fracturing (THF) tests and pulse hydraulic fracturing tests with rock-like specimens. We compared the interaction between hydraulic fractures and pre-existing fractures in the two hydraulic fracturing tests. Acoustic emission (AE) characteristics of the interaction between hydraulic fractures and pre-existing fractures during pulse hydraulic fracturing are analyzed. The results show that pre-existing fractures in the rock-like specimen can induce the direction of propagation of hydraulic fractures. The influence of pre-existing fracture tips on hydraulic fracture propagation is greater with low pulse frequencies than with traditional hydraulic pressures and high pulse frequencies. When the pulse frequency is 1 Hz, hydraulic fractures are easily induced by pre-existing fracture tips. With increasing pulse frequency, the hydraulic fracture propagation direction gradually moves away from the pre-existing fracture tips and extends perpendicularly to the direction of the minimum principal stress. Under pulse hydraulic loading, more hydraulic fractures are generated around the wellbore than under THF and extend to the pre-existing fracture, and more hydraulic fractures around the wellbore are created with low-frequency pulse loading than with high-frequency pulse loading. Compared with traditional hydraulic pressures, hydraulic fracture propagation with low pulse frequencies (1 and 3 Hz) is more complex than hydraulic fracture propagation with traditional hydraulic pressures and high pulse frequencies (5 Hz). Under high pulse hydraulic pressure and pulse frequency, hydraulic fractures easily extend along the direction perpendicular to the direction of the minimum principal stress like propagation under traditional hydraulic pressure. The study of the interaction mechanism between hydraulic fractures and natural fractures under pulsating hydraulic pressure can provide a method for the formation of fracture network systems in large-scale fracturing and may improve the fracturing efficiency.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3