CO2-Storage Capacity—Combining Geology, Engineering and Economics

Author:

Allinson W.G.. G.1,Cinar Y..2,Neal P.R.. R.3,Kaldi J..4,Paterson L..5

Affiliation:

1. School of Petroleum Engineering, The University of New South Wales (UNSW)

2. Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) and School of Petroleum Engineering, UNSW

3. CO2CRC and School of Petroleum Engineering, UNSW

4. CO2CRC and Australian School of Petroleum, University of Adelaide

5. CO2CRC

Abstract

Summary This paper argues that any carbon dioxide (CO2) capacity-estimation method requires a combination of geological, engineering, and economic analyses to provide rigorous capacity estimates. It also argues that the classification of capacity estimates should follow concepts in the existing SPE Petroleum Resource Management System (PRMS) (SPE 2007) as closely as possible. The paper takes the discussion of CO2-storage capacity significantly further. It also aligns storage-capacity definitions more closely to the widely accepted PRMS. Numerous authors and organizations have proposed CO2-capacity classification and calculation systems. In most of them, there is a definition of CO2-storage capacity that is intended to parallel the definition of petroleum reserves—namely, the volume of hydrocarbons that can be commercially recovered from known accumulations from a given date. However, each of the proposed systems applies economics only at the highest classifications of their systems. This is attributed to the infancy of the carbon-capture-and-storage (CCS) industry and/or the lack of a carbon price. However, in this paper, we demonstrate how economics combined with analytical and numerical injectivity modeling on the basis of geological models of the subsurface can help determine practical storage capacity. In doing this, the paper makes observations about methods for estimating storage capacity, shows results of reservoir simulations and economic analyses, draws on SPE and internationally accepted methodologies and definitions of petroleum resources, and discusses how equivalent definitions can be applied to storage capacity. Finally, the paper provides recommendations for an improved CO2-storage-capacity classification system.

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Energy,General Business, Management and Accounting

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3