Deployment of a Rotodynamic Multiphase Pump in a Remote Hilly-Terrain Oil Field in Saudi Arabia

Author:

Humoud Amir A.1,Boudi Adnan A.2,Al-Qahtani Saeed Dahfer1,Al-Dayil Nasir1

Affiliation:

1. Saudi Aramco

2. Framo Engineering

Abstract

Abstract Multiphase boosting technology can provide a cost-effective option for developing remote and marginal oil field discoveries, by reviving dead oil wells and increasing the production from active wells. The implementation of the multiphase technology at the remote field is a new strategy to obtain increased production and flow assurance from the operator. This paper describes the implementation of a rotodynamic (helicon-axial) multiphase pumping (MPP) system at a remote, hilly-terrain onshore oil field in Saudi Arabia. The process conditions, the MPP package scope of supply, the MPP installation setup and operation will be discussed in detail. Introduction The water cut and gas fraction usually increase with field production over time. This problem can be aggravated if the multiphase well fluids, transported over long distance pipelines, cross hilly topography due to the added length of the pipelines, to production stations or process facilities. Therefore production reaches a stage where the field or part of the field becomes severely restricted and could lead to premature abandonment of many producing wells, unless remote multiphase pressure boosting is implemented to regain production. MPPs are capable of pumping multiphase flow streams with various combinations of oil, water, and gas without the need for separation. The MPP technology is mostly used to add energy to unprocessed fluids to be transported to processing facilities located downstream. The MPP can help reduce or eliminate the need for remote production infrastructure such as separation equipment and offshore platforms. This would lead to lower operating costs associated with the development of hydrocarbon reserves. Marginal fields located in hostile environments can also be developed more economically. In addition, MPPs can reduce the high-back pressure on producing wells, leading to increases in production and recoverable reserves. The selection of the suitable multiphase boosting system is generally based on a number of factors such as the economics and constraints imposed by a geographic location, specific field conditions and fluid properties. Some of the common constraints are available space and weight, in the case of offshore platforms. Power availability is another concern for marginal and unmanned satellite field developments.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on the gas pockets in a rotodynamic multiphase pump;IOP Conference Series: Materials Science and Engineering;2016-05

2. Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump;Experimental Thermal and Fluid Science;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3