IIoT Edge Analytics: Deploying Machine Learning at the Wellhead to Identify Rod Pump Failure

Author:

Boguslawski Bartosz1,Boujonnier Matthieu1,Bissuel-Beauvais Loryne1,Saghir Fahd1,Sharma Rajesh D.1

Affiliation:

1. Schneider Electric

Abstract

Abstract Oil and Gas operators now have the possibility to collect and leverage significant amounts of data directly at the extremities of their production networks. Data combined with Industrial Internet of Things (IIoT) architecture is an opportunity to improve maintenance of assets, increase their up-time, reduce safety risks and optimize operational costs. However, to turn data into meaningful insights, Oil and Gas industry needs to fully take benefit of Machine Learning (ML) models which are able to consume real-time data and provide insights in isolated locations with scarce connectivity. These ML models need to be precise, robust and compatible with Edge computing capabilities. This paper presents an analytics solution for rod pumps, capable of automated Dynagraph Card recognition at the wellhead leveraging an ensemble of ML models deployed at the Edge. The proposed solution does not require Internet connectivity to generate alarms and addresses confidentiality requirements of Oil and Gas industry. An overview of the employed ML models as well as the computing and communication infrastructure is given. We believe the given outline is insightful for the petroleum industry on its road to digitization and optimization of Artificial Lift systems.

Publisher

SPE

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3