Next-Generation Gelling Agents for Improved Displacement in Enhanced Oil Recovery Processes

Author:

Temizel Cenk1,Zhang Ming2,Biopharm Frontida2,Jia Bao2,Putra Dike3,Moreno Raul4,Al-Otaibi Basel5,Alkouh Ahmad6

Affiliation:

1. Area Energy

2. University of Kansas

3. Energy Rafflesia

4. Consultant

5. Kuwait Oil Co.

6. Middle East Oilfield Services

Abstract

Abstract Per recent analyses, in the near future, over half amount of the oil extracted globally will require some form of enhanced oil recovery (EOR) technique. Existing literature and historical investigations suggest that in oil reservoirs having viscosities between 10 — 150 m. Pa.s, there is a substantial prospective for tertiary recovery through the implementation of polymer flooding. For reservoir oil viscosities above 150 mPa.s, the polymer pumping efficiency goes down as polymer injectivity reduces significantly with increasing injection water viscosity that is used to attain a favorable mobility ratio at such high oil viscosities. To overcome this limiting factor, in this study, we propose the use of supramolecular assemblies (SMA) that have adjustable viscosity properties. Complex long-chain amino-amides and maleic acid are used to make these assemblies, which allow it to have reversible viscosity depending on the solution pH level. To maintain high injection efficiency, during pumping, SMA solutions will be kept at low viscosity values. On entry in deep reservoir or at oil contact phase, through introduction of an external stimulus, the viscosity of SMA solution will be reversed to a much higher viscosity. This will allow to sufficiently improve the mobility ratio. Preliminary results from lab-scale studies have indicated that along with reversibly adjustable viscosity property, SMA solutions are also tolerant to high temperatures and salt concentrations. Supramolecular solutions can be contemplated as remedy polymer systems, since unlike conventional polymers they disassemble and re-assemble when exposed to high temperature and stress conditions. In such conditions, conventional polymers generally undergo degradation. Additionally, through molecular scission processes SMA solutions can also be used in highly confining environments as well as in permafrost conditions and thin zones where conventional thermal techniques are not applicable. The objective of this work is the development of a novel SMA system that has the aforementioned properties of reversibly adjustable viscosity through pH, tolerance to high temperature and salt concentrations through desired interfacial properties. Lab-scale preliminary results have shown the potential economic benefits of the use of SMA solutions on a field-wide scale. Based on the results, it must be emphasized that SMA systems have a worldwide application in oil reservoirs for EOR purposes.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of salinity on solution properties of a partially hydrolyzed polyacrylamide;Journal of Molecular Liquids;2023-08

2. References;Artificial Intelligence and Data Analytics for Energy Exploration and Production;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3