Automatic Multiwell Assessment of Flow-Related Petrophysical Properties of Tight-Gas Sandstones Based on the Physics of Mud-Filtrate Invasion

Author:

Bennis M.1ORCID,Torres-Verdín C.2ORCID

Affiliation:

1. The University of Texas at Austin

2. The University of Texas at Austin (Corresponding author)

Abstract

Summary Petrophysical interpretation of borehole geophysical measurements in the presence of deep mud-filtrate invasion remains a challenge in formation evaluation. Traditional interpretation methods often assume a piston-like radial resistivity model to estimate the radial length of invasion, resistivities in the flushed and virgin zones, and the corresponding fluid saturations from apparent resistivity logs. Such assumptions often introduce notable inaccuracies, especially when the radial distribution of formation resistivity exhibits a deep and smooth radial front. Numerical simulation of mud-filtrate invasion and well logs combined with inversion methods can improve the estimation accuracy of petrophysical properties from borehole geophysical measurements affected by the presence of mud-filtrate invasion. We develop a new method to quantify water saturation in the virgin zone, residual hydrocarbon saturation, and permeability from borehole geophysical measurements. This method combines the numerical simulation of well logs with the physics of mud-filtrate invasion to quantify the effect of petrophysical properties and drilling parameters on nuclear and resistivity logs. Our approach explicitly considers the different volumes of investigation associated with the borehole geophysical measurements included in the interpretation. The new method is successfully applied to a tight-gas sandstone formation invaded with water-base mud (WBM). Petrophysical properties were estimated in three closely spaced vertical wells that exhibited different invasion conditions (i.e., different times of invasion and different overbalance pressures). Available rock-core laboratory measurements were used to calibrate the petrophysical models and obtain realistic spatial distributions of petrophysical properties around the borehole. This approach assumes that initial water saturation is equal to irreducible water saturation. Based on the calibrated petrophysical models, thousands of invasion conditions were numerically simulated for a wide range of petrophysical properties, including porosity and permeability. Based on the large data set of numerical simulations, analytical and machine-learning (ML) models were combined to infer unknown rock properties in each well. Mean-absolute-percent errors (MAPE) of the analytical and ML models for the estimation of water saturation in the virgin zone are 5% and 2%, respectively, while the MAPE of the analytical models for the estimation of residual hydrocarbon saturation is 10%. Synthetic and field examples are examined to benchmark the successful application and verification of the new interpretation method. Estimates of water saturation in the virgin zone using the new method are in good agreement with core-based models.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Reference34 articles.

1. Petrophysical Inversion of Borehole Array-Induction Logs: Part I — Numerical Examples;Alpak;Geophysics,2006

2. Numerical Simulation of Mud-Filtrate Invasion in Horizontal Wells and Sensitivity Analysis of Array Induction Tools;Alpak;Petrophysics,2003

3. Bennis, M . 2022. New Methods for the Interpretation of Borehole Geophysical Measurements and Core Data Acquired in Spatially Complex Rocks. PhD dissertation, The University of Texas at Austin, Austin, Texas, USA.

4. Estimation of Dynamic Petrophysical Properties From Multiple Well Logs Using Machine Learning and Unsupervised Rock Classification;Bennis,2019

5. Random Forests;Breiman;Machine Learning,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3