Treatment of Prodigious Reactive Shale in the Permian Basin Using High-Performance Drilling Fluid: A Successful Case Study

Author:

Alhadi Almostafa1,Magzoub Musaab2

Affiliation:

1. University of Texas Austin

2. Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, Oklahoma, USA.

Abstract

Abstract In the Permian basin, Spraberry Trend is one of the formations that markedly contribute to the unconventional shale production in the U.S. lately. Unusual shale reactivity was encountered while drilling several horizontal wells, leading to wellbore instability issues. Consequently, shakers’ screens blockage increased the mud losses and drilling time, leading to an increased non-productive time (NPT). This paper addresses the challenges and causes of the formation instability issues resulted from shale interaction with the used drilling fluid and presents the timely actions taken to mitigate such problems. During the drilling operation, several rock samples were collected at different depth intervals from the shale shaker. Rock samples were analyzed to identify the clay and minerals contents in the formations. The collected samples were first cleaned to remove the mud, dried, ground, and then characterized by an X-ray diffraction test (XRD) and microscopic imaging. After identifying the possible reasons for the wellbore instability, several timely actions were taken to mitigate this issue. These actions include: 1) increasing the emulsion stability, 2) increasing the water phase salinity (WPS), 3) decreasing the water phase volume, 4) adding wetting agent, 5) using wider screens for the shaker, and 6) controlling drilling parameters such as weight on bit and rotational speed. Afterward, wellbore stability, well control problem indicators, and drilling fluid properties, especially rheology, were closely monitored to identify any subsequent or unusual events. The geological and mineralogy studies show that the drilled formation contains high smectite and illite clay content, up to 49%, which was believed to be the main reason for the unusual shale reactivity. Replacing the existing screens (200 API) with wider screens (160 and 140 API) showed an insignificant effect in mitigating the screens blockage. The adopted method of reducing the rate of penetration (ROP) and increasing the circulation time helped significantly alleviate the screens blockage by reducing the cuttings production and giving more time for hole cleaning. Furthermore, the optimal hole cleaning successfully increased the formation's stability. Adding a wetting agent to the drilling mud did not impact the cuttings aggregations; however, it led to a decrease in the rheological properties; thus, adding more concentration of the viscosifier was required to maintain the fluid rheology. Increasing the water phase salinity (WPS) to over 230k ppm and the emulsion stability to over 700 mV was considered the backbone of the treatment plan that significantly resolved the issue by inhibiting the clay. Eventually, the critical considerations were pointed out.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3