A Laboratory Investigation of Fire-Water Flooding

Author:

Garon A.M.1,Wygal R.J.1

Affiliation:

1. Gulf Research and Development Co.

Abstract

Abstract The results of a systematic investigation of the parameters of fire-water flooding are reported. The parameters of fire-water flooding are reported. The results were obtained from a series of 131 combustion-tube tests. Experimental equipment and procedures were developed to minimize heat-transfer procedures were developed to minimize heat-transfer problems and transient effects at the inlet of the problems and transient effects at the inlet of the tube. The tests were performed with water/air injection ratios from 0 to 13 cu ft/Mscf, using crudes with gravities from 10 degrees to 48 degrees API, in waterflooded and nonwaterflooded sands at pressures of 0, 1,000, and 2,000 psig. The air requirements for fire-water flooding were reduced by more than 50 percent in some cases. Similar results were obtained with various crudes. Introduction The greater demand for crude oil, the increased difficulty of discovering new reservoirs, and the desire to reduce dependence on imports have emphasized the need for enhanced recovery methods capable of economically producing the crude remaining in known reservoirs. Numerous methods have been proposed and tested in laboratories and field pilots, and some have been used in commercial applications. Fire flooding is one enhanced recovery method that has been technically successful in many field applications. Some of these projects have been economically successful, but many are only marginally so. The high cost of air compression for fire flooding is one of the major factors that influence the economics. Large quantities of air are required per unit reservoir volume swept, especially for heavy crude, because all the residual material remaining in the sand immediately ahead of the combustion zone must be consumed. Only a portion of the heat generated is necessary for maintaining the movement of the combustion zone, and the remainder is left behind in the depleted sand. Fire-water flooding is a recovery technique that was conceived to improve the economics of dry fire flooding. In this process, water is injected along with the air to recover some of the heat remaining behind the combustion zone. At low water injection rates, the heat is transported through the combustion zone by superheated steam to where it can be utilized for preheating the reservoir. At higher water injection rates, the water partially quenches the combustion, reducing the maximum temperature to the steam-plateau level, and heat is transferred through the combustion zone as saturated steam. The air requirement is lower with water injection because the amount of hydrocarbonaceous material deposited on the sand grains is less and because all of this fuel is not necessarily consumed. At a constant air injection rate, the oil may be produced faster with water injection than without because of the more rapid combustion-zone movement, the increased utilization of energy, and the increased volume of fluid injected. Fire-water flooding has been investigated in several different laboratories with combustion-tube experiments. The feasibility of partially quenched combustion, the reduced air requirements, and the improved utilization of heat with water injection have been confirmed. However, the results of only a few experiments have been reported by each investigator, and only a limited amount of experimental information is available on the relationships of the fire-waterflooding parameters. in addition, it has been suggested that be results of wet combustion tests may be misleading because of experimental limitations. In this paper, the results of a systematic investigation of the parameters of fire-water flooding are reported. The results were obtained from combustion-tube tests. The equipment was designed to minimize heat-transfer problems, and operating procedures were developed that reduced the procedures were developed that reduced the transient effects at the inlet of the tube. SPEJ P. 537

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new approach to ignition time prediction in crude oil oxidation using PDSC;Fuel;2023-12

2. The effect of water on combustion behavior of crude oils;Journal of Petroleum Science and Engineering;2020-03

3. Chain Reactions Approach to the Initial Stages of Crude Oil Oxidation;Energy & Fuels;2018-10-15

4. Thermal Recovery Processes;Enhanced Oil Recovery;2018

5. In-Situ Combustion;Reservoir Engineering and Petrophysics;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3