Steam-Surfactant-Foam Modeling in Heavy Oil Reservoirs

Author:

Lashgari Hamid R.1,Lotfollahi Mohammad1,Delshad Mojdeh1,Sepehrnoori Kamy1,de Rouffignac Eric1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Steam foam is a hybrid and novel method of the thermal and chemical flooding to improve the sweep efficiency of steam for producing heavy crude oils. Steam injection is a mature process to substantially reduce the oil viscosity in heavy oil reservoirs to increase its mobility. Steam flooding is an unstable displacement since the gravity of steam causes poor vertical sweep efficiency due to the gravity override in thick high permeability pay zones and poor areal sweep efficiency in high permeability channels with high connectivity. On the other hand foam reduces the mobility of steam by stabilizing the liquid lamellae that cause some or all of the steam to exist as a discontinuous phase. Therefore, foam plugs large pores to divert the flow into the low permeability zones and controls gravity override. Foam increases the pressure gradient slightly in the steam swept regions and leads to heating oil more efficiently when steam diverts into the cold unswept regions. Furthermore, surfactant mobilizes the high viscous oil by emulsification and reduction of interfacial tension. The synergy of steam, surfactant, and foam has the potential to greatly improve the recovery of heavy oil reservoirs. Based on a literature survey, steam foam injection has been conducted in both laboratory corefloods and few field pilots. On the other hand, existing numerical simulators have not been able to capture the mechanisms involved in such a process. In this paper, we present the development and implementation of a new robust steam formulation in a four phase chemical flooding reservoir simulator (UTCHEM) to model and understand the contribution of each mechanism such as viscosity reduction, emulsification, and foam for mobility control. Results illustrate that the steam foam process controls the mobility of steam to avoid incomplete vertical sweep due to gravity segregation. Formation of the emulsion phase by condensing steam along with the presence of water leads to an increase in the emulsion viscosity and thereby decreases water production. The presence of surfactant and emulsification of oil either as water in oil or oil in water emulsions can also impact the displacement and propagation of viscous oil. The mechanistic understanding of steam foam process and improvement of the heat transfer compared to conventional steam flooding is a key finding in this research to optimize the technology that unlocks heavy oil reservoirs with favorable economics.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3