3D Finite Element Modeling of Laboratory Hydraulic Fracture Experiments

Author:

Alqahtani Naif B.1,Miskimins Jennifer L.2

Affiliation:

1. King Abdulaziz City for Science and Technology

2. Colorado School of Mines

Abstract

Abstract Laboratory experiments are an excellent way to visualize and improve our understanding of the hydraulic fracturing process. However, in order to truly apply the results of laboratory work to the field, an understanding of what artificial conditions are being created during the laboratory process must also be developed. This paper describes 3D finite element modeling and associated results using actual laboratory block tests as a basis. These models consisted of seven basic block systems, including a single layer system, with and without a wellbore, as a control case; a three-layer model with and without a wellbore; and a seven layer system, with a wellbore, without a wellbore, and with a cased wellbore. These seven systems were based on actual triaxial hydraulic fracturing experiments that were performed on mid-sized blocks (11 × 11 × 15 in) consisting of the same single, three, and seven-layers. The fracture growth patterns in the actual laboratory tests were extremely complex, not at all like the planar fractures dictated by hydraulic fracturing theory. The intent of the modeling was to 1) determine the spatial stress contrasts being created by the material property contrasts of the layered systems in the triaxial system and 2) determine if the complex fracture growth could be accounted for by these modeled contrasts. Results were also used to determine the potential for shearing across the layered systems. A commercial, modeling software, capable of numerically determining the 3D stress distributions in the various porous media, was used. Numerical results were validated with analytical calculations. The results of the modeling provide insight into the time-dependent application of stresses in a laboratory setting. It helped to explain the complex fracture growth in the actual experiments and gave some insight into the conditions that would cause vertical or horizontal fracture growth in a layered system of different material properties. The modeling also documented the creation of shear stresses which accounted for some fracture path deviation. The results of this paper aid in understanding the mechanisms of complex hydraulic fracture growth in reservoirs settings. Additionally, insight into the shear and tensile fracture mechanisms that generate acoustic events was gained.

Publisher

SPE

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3