Critical Sand Deposition Velocity in Horizontal Stratified Flow

Author:

Ibarra Roberto1,Mohan Ram S.2,Shoham Ovadia2

Affiliation:

1. Imperial College London

2. The University of Tulsa

Abstract

Abstract Transport of sand in multiphase pipelines occurs in the petroleum industry as sand is produced co-mingled with crude oil. Stationary sand beds are formed at the pipe bottom when the flow velocity is lower than the critical sand deposition velocity. These sand beds reduce reservoir production and affect the integrity of the pipe system due to pipeline plugging and erosion/corrosion produced by sand particles. Therefore, the production system must be designed to operate at a velocity high enough to enable transport of sand particles along the pipe. For that reason, it is crucial to predict the critical sand deposition velocity in order to maximize reservoir production. Gas-liquid-sand flow hydrodynamics, which is commonly encountered in most reservoirs and also in oil and gas transportation pipelines, is more complex than liquid-sand flow, making the modeling extremely difficult. At present, gas-liquid-sand flow is still not well understood, with limited data available in the literature. In addition, the effect of sand concentration has not been thoroughly studied for two-phase flows transporting sand. Experimental and theoretical investigations have been conducted in this study on gas-liquid-sand stratified flow in horizontal pipes at low sand concentrations. A 4-in experimental facility was designed and constructed and data were acquired utilizing air-water-glass beads flow. The data include measurements of critical sand deposition velocities, namely, the transition between moving and stationary beds. The data reveal that for a constant superficial liquid velocity, the critical mixture and liquid sand deposition velocities increase with increasing sand concentrations. Also, for a given sand concentration, the critical liquid velocity is almost the same for different superficial liquid velocities. The sand deposition correlations of Oroskar and Turian (1980) for single-phase flow and Salama (2000) for two-phase flow are modified and extended in order to develop a new correlation. The developed correlation enables the prediction of critical sand deposition mixture velocity for horizontal stratified flow, as a function of sand concentration along with other parameters. Comparison between the predictions of the developed correlation and the experimental data reveal a very good agreement, whereby the relative errors of mixture and liquid critical sand deposition velocities are ±2.5% and < 5%, respectively.

Publisher

SPE

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3