Impact of Digitalization on the Way of Working and Skills Development in Hydrocarbon Production Forecasting and Project Decision Analysis

Author:

Clemens Torsten1,Viechtbauer-Gruber Margit2

Affiliation:

1. OMV E&P

2. OMV AG

Abstract

Summary Hydrocarbon (re-)development projects need to be evaluated under uncertainty. Forecasting oil and gas production needs to capture the ranges of the multitude of uncertain parameters and their impact on the forecast to maximize the value of the project for the company. Several authors showed, however, that the oil and gas industry has challenges in adequately assessing the distributions of hydrocarbon production forecasts. The methods for forecasting hydrocarbon production developed with digitalization from using analytical solutions to numerical models with an increasing number of gridblocks (“digital twins”) toward ensembles of models covering the uncertainty of the various parameters. Analytical solutions and single numerical models allow calculation of incremental production for a single case. However, neither the uncertainty of the forecasts nor the question in which the distribution of various outcomes the single model is located can be determined. Ensemble-based forecasts are able to address these questions, but they need to be able to cover a large number of uncertain parameters and the amount of data that is generated accordingly. Theory-guided data science (TGDS) approaches have recently been used to overcome these challenges. Such approaches make use of the scientific knowledge captured in numerical models to generate a sufficiently large data set to apply data science approaches. These approaches can be combined with economics to determine the desirability of a project for a company (expected utility). Quantitative decision analysis, including a value of information (VoI) calculation, can be done addressing the uncertainty range but also the risk hurdles as required by the decision-maker (DM). The next step is the development of learning agent systems (agent: autonomous, goal-directed entity that observes and acts upon an environment) that are able to cope with the large amount of data generated by sensors and to use them for conditioning models to data and use the data in decision analysis. Companies need to address the challenges of data democratization to integrate and use the available data, organizational agility, and the development of data science skills but making sure that the technical skills, which are required for the TGDS approach, are kept.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3