A Simple Normalized Analytical Model for Oil Production of SAGD Process and Its Applications in Athabasca Oil Sands

Author:

Wang Shengdong1ORCID

Affiliation:

1. Cenovus Energy Inc. (Corresponding author)

Abstract

Summary Since the late 1980s, when the Alberta Oil Sands Technology and Research Authority Underground Test Facility project first demonstrated the feasibility of the steam-assisted gravity drainage (SAGD) technology, many commercial SAGD projects were brought online in Western Canada. Now, many of these projects have late-life SAGD wells approaching their ultimate SAGD recovery factors. Although these projects have demonstrated highly variable production performance, there is an opportunity to use the industry production data to find what they have in common and develop a normalized SAGD model. For this paper, we collected oil production history from several leading SAGD projects with late-life production in the Athabasca oil sands area and confirmed the three stages in an SAGD project lifespan: chamber rising, chamber spreading, and chamber falling stages. By normalizing the field data, all SAGD projects converged to one type curve, regardless of reservoir quality and operating conditions. Based on this observation, a new simple normalized model is derived to model the bitumen production in a typical SAGD process for Athabasca oil sands. The new model bridges the gap between the existing SAGD analytical model and conventional decline analysis and provides oil production forecasts based on the inputs for the five-component recovery factor method defined in the Canadian Oil and Gas Evaluation Handbook(Society of Petroleum Evaluation Engineers 2018). The model has been applied to one of the thermal projects to history match the field production. By running a Monte Carlo simulation, this model further demonstrates its capability to capture the uncertainty of the production forecast for the project at different stages of SAGD operation. In addition, by properly modifying the type curve of the analytical model, a similar workflow can be used to model cases with special reservoir quality or different operational limitations.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3