Coiled Tubing Jet Drilling With a Downhole Pressure Intensifier

Author:

Kolle Jack J.1,Theimer Kenneth1,Theimer Tony1,Cox Robert2,Scherschel Steve Ralph2

Affiliation:

1. Tempress Technologies Inc.

2. Trican Well Service Inc.

Abstract

Abstract High-pressure rotary jet drilling holds the promise of increased rate of penetration with reduced weight-on-bit, torque and vibration levels. A high-pressure rotary jet drill, pressure intensifier and gas separator have been developed to allow jet drilling using conventional surface pumping equipment and coiled tubing. High-pressure reaction turbine jet rotors have been developed for drilling holes ranging from 1–1/8" to 3–5/8". Jet drilling tests have shown that 70 MPa (10,000 psi) jets can effectively drill most conventional oil and gas producing formations. Conventional pumps, swivels and tubing operate at up to 28 MPa (4000 psi). A 2.5:1 pressure intensifier was developed to allow jetting at the pressure required for effective drilling. The intensifier can operate on two-phase flow using a downhole gas separator. In two-phase operation the separated gas is used to power the intensifier and the high-pressure water is provided to the jetting nozzles. The gas exhaust from the intensifier is ported to the drilling head to extend the range of the jets. Tests have demonstrated that the jet drilling BHA is capable of cement milling but rates of penetration are lower than a motor and mill and the pumping pressures required are higher. The tools could find applications in situations where a motor cannot be used. For example the tools could power a small diameter lance jet drill through an ultra-short radius curve for lateral drilling. Well service applications include removal of hard scale without risk of damage to damage to downhole equipment. Introduction Jet drilling is limited by the threshold pressure required to erode rock and by submerged fluid jet dissipation. The jet pressure delivered to the rock surface determines the ability of the jet to cut the rock. The jet power then determines the rate of drilling. The pressure that can be delivered to a jetting tool through coiled tubing (CT) is limited by fatigue limits of the coil and the pressure capabilities of available pumps. Approaches to jet drilling at the pressure available through coil include abrasives (Eslinger et al. 2000), and alternate fluids such as supercritical carbon dioxide (Kollé 2000) or acid (Moss et al. 2006). The consumables associated with these approaches add significant cost and complexity to the operation. Another approach is to boost the pressure of the jets with a downhole intensifier. A downhole intensifier has been developed for jet-assisted drilling of 7–7/8" to 8–3/4" holes (Veenhuizen et al. 1995). The unit was designed to work with a conventional rotary drill string and to run on drilling mud. The intensifier area ratio was 14:1 - delivering 84 lpm at 200 MPa from mud supplied at 1260 lpm and 23 MPa. This system provided increased rate of penetration but required higher mud pressure and the economic benefit was marginal. A coiled tubing downhole intensifier has been developed to boost fluid pressure by 2:1 to enable mineral scale milling with standard coil and pumps (Kollé et al. 2007). A rotary gas separator removes the nitrogen from the jetting fluid to allow jetting with a straight fluid jet. Dual passage rotary jetting tools port the nitrogen around the jets to enhance jet range. As discussed below, jet drilling of oil and gas producing formations requires a jet pressure of at least 70 MPa. A larger version of this tool with a higher intensification ratio for rock drilling is discussed here. Rock Erosion Threshold Pressure Typical CT pumping pressures range from 28 MPa for low pressure coil to 70 MPa for heavy wall, high strength coil. In areas where hydrogen sulfide is present, the maximum coil pressure will be reduced. The pressure differential available at the bottomhole assembly (BHA) may be 10 MPa lower than the pump pressure depending on flow rate, coil diameter and coil length. Underbalanced operations with commingled nitrogen and water reduce the bottomhole pressure and can increase the differential pressure available at the BHA relative to pump pressure.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of heat extraction performance for vertical multi-fractures in enhanced geothermal system;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2021-07-05

2. Experimental Study on the Sliding Friction for Coiled Tubing and High-Pressure Hose in a Cuttings Bed During Microhole-Horizontal-Well Drilling;SPE Journal;2018-12-31

3. Schneiden von Hartgestein mit Hochdruckstrahlen unter simulierten Bohrlochbedingungen;BHM Berg- und Hüttenmännische Monatshefte;2018-11-15

4. Hard rock cutting with high pressure jets in various ambient pressure regimes;International Journal of Rock Mechanics and Mining Sciences;2018-08

5. Study of the bottom-hole rock stress field under water jet impact;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2016-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3