Adsorption Characteristics of CO2/CH4/H2S Mixtures in Calcite Nanopores with the Implications for CO2 Sequestration

Author:

Rui Zhenhua1,Qian Cheng2ORCID,Liu Yueliang3ORCID,Zhao Yang4ORCID,Li Huazhou Andy5ORCID,Afanasyev Andrey6ORCID,Torabi Farshid7ORCID

Affiliation:

1. National Key Laboratory of Petroleum Resources and Engineering; College of Petroleum Engineering; College of Carbon Neutrality Future Technology; College of Petroleum, China University of Petroleum, Beijing

2. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing / College of Petroleum Engineering, China University of Petroleum, Beijing (Corresponding author)

3. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing / College of Petroleum Engineering, China University of Petroleum, Beijing / College of Carbon Neutrality Future Technology, China University of Petroleum, Beijing (Corresponding author)

4. National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing / College of Petroleum Engineering, China University of Petroleum, Beijing / College of Carbon Neutrality Future Technology, China University of Petroleum, Beijing

5. Civil and Environmental Engineering Department, University of Alberta

6. Institute of Mechanics, Moscow State University

7. Petroleum Systems Engineering, University of Regina

Abstract

Summary Injecting CO2 into reservoirs for storage and enhanced oil recovery (EOR) is a practical and cost-effective strategy for reducing carbon emissions. Commonly, CO2-rich industrial waste gas is used as the CO2 source, whereas contaminants such as H2S may severely impact carbon storage and EOR via competitive adsorption. Hence, the adsorption behavior of CH4, CO2, and H2S in calcite (CaCO3) micropores and the impact of H2S on CO2 sequestration and methane recovery are specifically investigated. The Grand Canonical Monte Carlo (GCMC) simulations were applied to study the adsorption characteristics of pure CO2, CH4, and H2S, and their multicomponent mixtures were also investigated in CaCO3 nanopores to reveal the impact of H2S on CO2 storage. The effects of pressure (0–20 MPa), temperature (293.15–383.15 K), pore width, buried depth, and gas mole fraction on the adsorption behaviors are simulated. Molecular dynamics (MD) simulations were performed to explore the diffusion characteristics of the three gases and their mixes. The amount of adsorbed CH4, CO2, and H2S enhances with rising pressure and declines with rising temperature. The order of adsorption quantity in CaCO3 nanopores is H2S > CO2 > CH4 based on the adsorption isotherm. At 10 MPa and 323.15 K, the interaction energies of CaCO3 with CO2, H2S, and CH4 are −2166.40 kcal/mol, −2076.93 kcal/mol, and −174.57 kcal/mol, respectively, which implies that the order of adsorption strength between the three gases and CaCO3 is CO2 > H2S > CH4. The CH4-CaCO3 and H2S-CaCO3 interaction energies are determined by van der Waals energy, whereas electrostatic energy predominates in the CO2-CaCO3 system. The adsorption loading of CH4 and CO2 are lowered by approximately 59.47% and 24.82% when the mole fraction of H2S is 20% at 323.15 K, reflecting the weakening of CH4 and CO2 adsorption by H2S due to competitive adsorption. The diffusivities of three pure gases in CaCO3 nanopore are listed in the following order: CH4 > H2S ≈ CO2. The presence of H2S in the ternary mixtures will limit diffusion and outflow of the system and each single gas, with CH4 being the gas most affected by H2S. Concerning carbon storage in CaCO3 nanopores, the CO2/CH4 binary mixture is suitable for burial in shallower formations (around 1000 m) to maximize the storage amount, while the CO2/CH4/H2S ternary mixture should be buried as deep as possible to minimize the adverse effects of H2S. The effects of H2S on CO2 sequestration and CH4 recovery in CaCO3 nanopores are clarified, which provides theoretical assistance for CO2 storage and EOR projects in carbonate formation.

Publisher

Society of Petroleum Engineers (SPE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3