Model Study of Foam as a Sealant for Leaks in Gas Storage Reservoirs

Author:

Bernard George G.1,Holm L.W.1

Affiliation:

1. Union Oil Co. of California

Abstract

Abstract Previous studies have shown that foam, because of its unique structure, reduces gas flow in porous media. This blocking action of foam appears to be especially suitable for sealing leaks in underground gas storage reservoirs. Such reservoirs often have permeable areas in the overlying caprock that allow permeable areas in the overlying caprock that allow vertical migration of gas from the storage zone to the upper formations. The escaped gas represents both a safety hazard and an economic loss. Our objectives in this study were to evaluate the effectiveness of foam in preventing the escape of gas from a leaky gas storage reservoir and to find the foaming agents that were most suitable for this purpose. We simulated the behavior of a leaky gas reservoir with a sandstone model and found that foam was 99-percent effective in reducing leakage of gas through the model. The amount of foaming agent required to seal a leak depends on the adsorption-desorption properties of the agent. After testing many foaming agents, we concluded that best results are obtained with certain modified anionic esters of relatively low molecular weight. Less than 0.3 lb of such agents is required per barrel of pore space in Berea sandstone. This study indicates that foam generation should be an effective and economical method for reducing or stopping gas leakage from an underground storage reservoir. Introduction The practicality of underground gas storage is greatly dependent upon the confinement that the caprock provides for the formation to be used as a storage reservoir. In spite of numerous precautions, several gas storage projects are plagued by vertical migration of gas from the intended storage zone to upper formations. Such gas leaks pose a safety hazard and represent an economic loss. If leakage is very high, the storage operation may be uneconomical. In at least one cases the leak problem is minimized by periodically collecting the escaped gas from the upper formation and reinjecting it into the storage reservoir. While such a solution is feasible, it is economically unattractive because the leak limits pressures and gas injection rates. Furthermore, energy must be expended in order to circulate the escaped gas. Recent studies have shown that foam, because of its unique structure, reduces gas flow in porous media. This blocking action of foam appears to be uniquely suitable for sealing leaks in underground gas storage reservoirs. Our objectives in this study were to determine the effectiveness of foam in reducing gas flow in a model of a "leaky" gas storage reservoir and to find foaming agents most suitable for this purpose. APPARATUS AND PROCEDURE PREPARATION OF THE MODEL PREPARATION OF THE MODELA laboratory model representing an estimated area of gas leakage in an Illinois gas storage reservoir was constructed of 24-in. × 6-in. × 1-in. Berea sandstone (See Fig. 1). The model was coated with Hysol plastic. The model represented an area of the reservoir approximately 600 ft wide, 2,400 ft long and 100 ft thick. The section contained about 2,000,000 bbl of pore space. The major portion of the reservoir is upstream of the inlet to this estimated area of leakage. The model, then, was geometrically scaled to this area of leakage in the reservoir. Distribution channels were installed on both ends of the model to permit linear gas flow through its entire width and thickness. Three injection wells were drilled into the model about one-third the distance from the inlet to the outlet. SPEJ P. 9

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foam Flood in Yates Reservoir for Improving Oil Recovery;Day 2 Tue, April 23, 2024;2024-04-22

2. Surfactant/Foam Processes in Shallow Subsurface Remediation: Evaluation of Foams as a Blocking Agent;Transport in Porous Media;2023-07-03

3. Foam Flow in Small Channels;Handbook of Multiphase Flow Science and Technology;2023

4. Foam Flow in Small Channels;Handbook of Multiphase Flow Science and Technology;2023

5. Experimental and numerical upscaling of foam flow in highly permeable porous media;Advances in Water Resources;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3