Soft-sensing for multilateral wells with down hole pressure and temperature and surface flow measurements

Author:

de Kruif Bas1,Leskens Martijn2,van der Linden Ruud1,Alberts Garrelt1

Affiliation:

1. TNO Science & Industry

2. TNO

Abstract

Abstract Real-time monitoring of downhole oil, gas and water flows in wells can significantly improve the production performance of these wells when this flow rate information is used to manipulate inflow control valves. An example of this is the allocation of a gas or water cone to its entrance point in a multilateral well, allowing to close down the individual well where the gas or water cone occurs, instead of closing down the complete well. Downhole monitoring of flows can be done via direct measurement. However, downhole multiphase metering is either expensive, inaccurate, or too difficult due to the harsh conditions. An alternative is to use softsensors. Softsensors estimate downhole holdups and flow rates from (relatively) cheap and reliable conventional downhole meters, such as pressure and temperature measurements, and a dynamic multiphase flow model connecting these measurements with the quantities of interest. Soft-sensing has already been investigated before for unilateral wells in Bloemen et al. (2004) and Leskens et al. (2008). In the second of these references, the simultaneous estimation of downhole oil, water and gas flows from downhole pressure and temperature measurements is considered. It is shown there that this estimation is badly conditioned (i.e. badly observable) and, thereby, not feasible in a practical situation. Using a similar approach and focussing on gas-lift wells, in Bloemen et al. (2004) it is suggested that soft-sensing with only downhole pressure and temperature measurements should work for the case that only a liquid and gas flow are estimated. In this paper, within the same soft-sensing framework as used in the mentioned two references, solutions are sought for soft-sensing of multilateral wells, both for the two-phase (gas and liquid) and three-phase (oil, water and gas) case. For that purpose, first, the question is addressed whether the unilateral two-phase case truly can be solved using only downhole pressure and temperature measurements. If so, the multilateral two-phase case is automatically solved with the corresponding soft-sensing solution simply consisting of a collection of unilateral two-phase sensors, one for each branch. It is shown that this solution is indeed feasible. After that, the three phase case is addressed. It is shown that for this case soft-sensing of multilateral wells is not possible, even when adding surface measurements and even though, as also shown here, it is possible for the unilateral well case when adding such measurements. Introduction Motivated by the discrepancy between demand for and availability of oil and gas, and by the improvement and increased availability of downhole measurement and control equipment, the oil and gas industry has embraced the "smart wells" philosophy. The main idea of this philosophy is to improve current reservoir management by combining control practices with reservoir and well monitoring techniques to get a higher recovery from a given reservoir, on the short-term and/or on the long-term, while simultaneously fulfilling constraints that are imposed out of environmental and operational considerations. In this document the focus is on the improvement of current well monitoring practice. Well monitoring can be defined as real-time measuring or estimating well production performance parameters such as water, oil and gas flow rates. These can be delivered to an operator or a control system to allow for taking steps to improve current well production performance. In particular, the application of well monitoring can improve the production of multilateral wells by determining which branches of the well are producing which fluids. This knowledge can be used to e.g. better handle gas or water breakthrough, for example by closing down only that branch of the well that produces a cone rather than closing down the complete well.

Publisher

SPE

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3