Experimental Investigation on Wellbore Strengthening in Shales by Means of Nanoparticle-Based Drilling Fluids

Author:

Contreras Oscar1,Hareland Geir2,Husein Maen1,Nygaard Runar3,Alsaba Mortadha3

Affiliation:

1. University of Calgary

2. Oklahoma State University

3. Missouri University of Science and Technology

Abstract

Abstract Wellbore strengthening (WS) is the mechanism of increasing the fracture pressure of the rock at depth. Applications of WS in the drilling industry enable safe drilling by preventing mud losses, drilling in narrow mud windows, accessing reserves in depleted reservoirs, and also have the potential to reduce the number of casing strings. Most of WS applications have been done for sandstones. In fact, a common industry thought is that a permeable formation is the only medium that allows WS occurrence. WS in shale formations is a controversial topic in the drilling industry due to the poor understanding of the mechanism and limited field success on strengthening of low permeability formations. This paper presents an experimental research work where a significant fracture pressure increase was achieved in shale and the predominant WS mechanism was identified. The main implication of this work is that WS can occur in shale formations using oil based mud (OBM) with the addition of nanoparticles (NPs) and graphite. Fracture pressure increase was quantified by conducting hydraulic fracturing tests on 5 3/4″x9″ Catoosa shale cores. A 9/16″ wellbore was drilled, cased and cemented. Overburden and confining pressures were applied on the cores to simulate a normal-faulting regime. Two injection cycles were applied allowing 10 min for fracture healing after the first cycle. The fracturing pressure was increased by 30% when calcium-based NPs (NP2) were used, whereas iron-based NPs (NP1) resulted in 20% increase. The optimum NPs concentrations were experimentally identified. A strong relationship between WS and HPHT filtration values was observed. Optical microscopy, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses were conducted on the cores post-testing. The fractures were found to be completely sealed from wellbore to tip. The seal was developed due to the carrier fluid penetration through the induced fractures and NPs attachment on the fracture faces. This was corroborated by the estimation of the pore throat aperture of the shale at the testing pressure. Tip isolation by the development of an immobile mass was identified as the predominant WS mechanism. A 20 micron-seal containing homogenously distributed NPs and graphite was formed. According to the post-testing analysis of cores and injection pressure, WS initially occurred in a certain wellbore direction and a second injection cycle forced the fluid to follow a different direction creating a second vertical fracture. An average angle of 30° was observed between the hydraulic fractures.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3