Multi-Trajectory Hydraulic Model for More Accurate Geosteering Constraints

Author:

Alyaev Sergey1,Daireaux Benoit1

Affiliation:

1. NORCE

Abstract

Abstract At the well-planning stage target selection usually accounts for drillability. However, during geosteering operations the drilling constraints are not updated and some fixed limits in terms of maximal inclination, dogleg severity, etc., are used instead. We demonstrate a methodology that uses fast physical models of the drilling hydraulics to calculate constraints and costs for geosteering dynamically during an operation. In field development, many companies have adopted workflows that use ensemble-based methods for decision support. A real-time variation of such a decision support system (DSS) has been recently proposed for geosteering. The DSS is capable of optimization full well trajectories across all realizations of the earth model and can consider multiple objectives and constraints simultaneously. We present a method that makes steady-state hydraulic computations for all possible trajectories ahead-of-bit simultaneously at a low added cost. The output of the computation can provide more precise constraints (geo-pressure margins and cuttings transport) and cost estimates for the DSS. In this paper we focus on verification and testing of the proposed multi-trajectory hydraulic model (MTHM). Discretization of the model acts as a trade-off between the preciseness of the computation and the computational speed. On our benchmark cases, a simulation that computes the hydraulic parameters for all trajectories with acceptable errors is fast enough for real-time geo-steering applications. Furthermore, we present a case based on data from the Norwegian Continental Shelf for which we demonstrate how hydraulic computations would influence the decisions of steering and stopping. Applying the DSS with the MTHM allows to precisely update the allowed steering interval, thus achieving safe operation while maximizing the expected well profit. We emphasize that integration of the drilling processes modelling as part of the decision support for the geosteering operation enables better decisions. This is facilitated by the digitalization of the oil industry, but still requires development of new approximate models of the drilling processes. This paper demonstrates the MTHM as an initial step towards integration of drilling and geosteering modelling.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3