Comparison of Water and Gas Tracers Field Breakthrough

Author:

Chen Hsieh1,Chang Sehoon1,Thomas Gawain1,Wang Wei1,Mashat Afnan2,Shateeb Hussain2

Affiliation:

1. Aramco Services Company: Aramco Research Center–Boston

2. Saudi Aramco

Abstract

Abstract We are developing new classes of barcoded advanced tracers, which, compared to present commercial offerings, can be optically detected in an automated fashion. The eventual goal for the advanced tracers is to deploy cost-effective, ubiquitous, long-term, and full-field tracer tests in supporting large-scale waterflooding optimization for improved oil recovery. In this paper, we compare model predictions to breakthrough data from two field tests of advanced tracers in a pilot during water alternating gas (WAG) cycles, where gas tracer tests have recently been performed as well. Two advanced tracer injections were performed at the test site. For the first injection, only a dipicolinic acid based advanced tracer (DPA) was injected. For the second injection, DPA and a phenanthroline- based advanced tracer, 4,7-bis(sulfonatophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BSPPDA), was injected in conjunction with a commercially available fluorobenzoic acid-based tracer (FBA) to benchmark their performance. Produced water samples were collected weekly for tracer analysis. Both newly developed 2D-high performance liquid chromatography/time-resolved fluorescence optical detection method (2D-HPLC/TRF) and liquid chromatography-mass spectrometry (LC-MS) were used to construct the breakthrough curves for the advanced tracers. In parallel, gas chromatography-mass spectrometry (GC-MS) was used to detect FBA tracer. Gas tracer tests have been performed on the same field. Since DPA, BSPPDA and FBA tracers were water tracers as designed, they were expected to appear in between gas tracer breakthroughs, and we observed exactly that for BSPPDA and FBA. Unexpectedly, the DPA predominantly appeared along with gas tracer breakthroughs, suggesting its favorable compatibility with the gas phase. We suspect the presence of some gas components rendered the medium more acidic, which likely protonates DPA molecules, thereby alters its hydrophilicity. A wealth of information could be gathered from the field tests. First, all tracers survived not only the harsh reservoir conditions but also the irregular WAG injections. Their successful detection from the producers suggested robustness of these materials for reservoir applications. Second, the breakthrough curves of the BSPPDA tracers using optical detection method were very similar to those of FBA tracers detected by GC-MS, substantiating the competency of our in-house materials and detection methods to the present commercial offerings. Finally, even though DPA has passed prior lab tests as a good water tracer, its high solubility to gas phase warrants further investigation. This paper summarizes key results from two field trials of the novel barcoded advanced tracers, of which both the tracer materials and detection methods are new to the industry. Importantly, the two co- injected advanced tracers showed opposite correlations to the gas tracers, highlighting the complex physicochemical interactions in reservoir conditions. Nevertheless, the information collected from the field trials is invaluable in enabling further design and utilization of the advanced tracers in fulfilling their wonderful promises.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3