Predicting Reservoir Souring in the Alba Field Using Produced Water Compositions – A Study of Biogenic Sulfate Loss

Author:

Ness Giulia1,Sorbie Kenneth2,Lugo Nancy3,de Rezende Julia R.2,Shi Xiang2

Affiliation:

1. Flow Confidimus

2. Heriot-Watt University

3. Ithaca Energy

Abstract

Abstract Microbial reservoir souring poses a significant threat to safe oil and gas production and operations and it is difficult to control and mitigate. Predicting future H2S trends with reservoir souring models is done in an attempt to define the worst-case scenario and make critical decisions related to the asset field life. Unfortunately, these predictions often prove wrong because of the large uncertainties around parameters used within these models and because predicting the behaviour of living microorganisms is much more complex than dealing with most other chemical challenges in oil & gas. This work proposes an alternative data-driven and mechanistic approach to the investigation of the souring problem in Alba, a mature North Sea field water flooded since 1994. A comprehensive dataset including water chemistry analyses, gas composition trends, fluid rates etc. is used to find important correlations between produced fluid compositions and changes in H2S production. The concept of biogenic sulfate loss is introduced to allow the comparison of results for wells located in different parts of the field and drilled at different stages of the field life. When looking at produced sulfate concentration, injection water fraction (IWF) and produced H2S we clearly identify 5 stages of H2S generation in the Alba field. Sulfate loss in produced fluids is detected first and it is followed by a delayed H2S production. Eventually both biogenic sulfate loss and H2S generation reach a plateau although it is not easy to determine the end members of these concentrations. Produced water data shows a significant sulfate loss in excess of 1000 mg/l caused by reservoir biogenic souring. To account for sulfate loss caused by changes in the IWF, the biogenic sulfate loss is calculated. This is defined as the SO42− drop from the expected SO42− concentration calculated using injection water fraction based on boron. A plot of maximum produced H2S and biogenic sulfate loss is constructed to compare all wells, show the souring trend and bracket the maximum H2S generation for the field. Sulfate and BTEX are not the limiting factor in H2S generation in this field but the maximum concentration of sulfide that bacteria can tolerate determines how high H2S can rise. This work shows for the first time how the change in produced sulfate concentration can be used to study the different stages of well reservoir souring in high sulfate waters. A new method of comparing wells based on biogenic sulfate loss and H2S production is proposed to bracket the maximum H2S generation expected in this field. This straightforward data analysis method is generally applicable in fields that are souring due to microbial activity and where the produced fluid compositions are available.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3