Swelling and Viscosity Reduction of Heavy Oil by CO2-Gas Foaming in Immiscible Condition

Author:

Or C..1,Sasaki K..2,Sugai Y..2,Nakano M..3,Imai M..3

Affiliation:

1. (currently at Institute of Technology of Cambodia)

2. Kyushu University

3. Japan Petroleum Exploration Company

Abstract

Summary In this study, foaming of heavy oil generated by depressurization from saturated carbon dioxide (CO2) solution was studied because generating foamy oil has a possibility of developing an enhanced oil recovery (EOR). The experiments were carried out by with a heavy crude oil at CO2 pressure less than 10 MPa and a temperature from 20 to 50 °C. The swellings of the generated foamy oils increased from 36.8 to 47.5% with reducing viscosity ratio from 79 to 42%, comparing with original viscosity. Furthermore, the investigation shows that CO2 microbubbles in the foamy oil started nucleating at pressure less than 8.0 MPa during depressurization from the saturation pressure of 9.97 MPa at 50 °C, and the foamy oil started decreasing the apparent viscosity. By exposing generated foamy oil under the shear rate of 76.8 seconds−1 for 5 minutes, the bubble-volume density profile changes from broadband toward to Gaussian distribution caused by disappearing larger size of gas bubbles, where bubble diameter of the maximum probability density of the bubble-volume distribution reduced from 80 μm to less than 10 μm. However, reduction of viscosity ratio was almost kept even though the distribution was changed; this shows that apparent viscosity strongly depends on the microbubbles sized less than 10 μm in diameter. It was expected that CO2 foamy oil has a potential to improve the recovery ratio of heavy oil by making the residual oil flow out from the immobile zones because of its large apparent swelling and improving mobility in porous oil-flow.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3